Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Bifurcation of periodic solutions in a nonlinear difference-differential equations of neutral type


Author: Robert K. Brayton
Journal: Quart. Appl. Math. 24 (1966), 215-224
MSC: Primary 34.75; Secondary 34.45
DOI: https://doi.org/10.1090/qam/204800
MathSciNet review: 204800
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of a self-sustained periodic solution in the autonomous equation

$\displaystyle u'\left( \tau \right) - \alpha u'\left( {\tau - h} \right) + \bet... ...ma u\left( {\tau - h} \right) = \epsilon f\left( {u\left( \tau \right)} \right)$

is proved under appropriate assumptions on $ \alpha ,\beta ,\gamma ,f$ and $ h$. The method of proof consists in converting this equation into an equivalent nonlinear integral equation and demonstrating the convergence of an appropriate iteration scheme.

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34.75, 34.45

Retrieve articles in all journals with MSC: 34.75, 34.45


Additional Information

DOI: https://doi.org/10.1090/qam/204800
Article copyright: © Copyright 1966 American Mathematical Society

American Mathematical Society