Multi-mode surface wave diffraction by a right-angled wedge

Authors:
R. C. Morgan, S. N. Karp and Jr. Karal

Journal:
Quart. Appl. Math. **24** (1966), 263-266

DOI:
https://doi.org/10.1090/qam/99917

MathSciNet review:
QAM99917

Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: This paper extends the phenomenological theory of multi-mode surface wave diffraction to a right-angled wedge configuration. The solution to a two-mode problem is obtained under the edge condition

**[1]**F. C. Karal, and S. N. Karp,*Phenomenological Theory of Multi-Mode Surface Wave Excitation, Propagation and Diffraction*, I. Plane Structures, New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. EM-198, 1964**[2]**F. C. Karal, and S. N. Karp,*Phenomenological Theory of Multi-Mode Surface Wave Structures*, Quasi-Optics Symposium, Brooklyn Polytechnic Inst., (John Wiley and Sons, New York, 1964). Also, New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. EM-201, 1964**[3]**F. C. Karal, and S. N. Karp,*Scattering of a Surface Wave By a Discontinuity in the Surface Reactance on a Right-Angled Wedge*, Jointly with Chu, Ta-Shing, and Kouyoumjian, R. G., Comm. Pure and Appl. Math.,**14**, 1961, pp. 35-48. Also, New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. EM-146, 1960 MR**0119790****[4]**R. C. Morgan, and S. N. Karp,*Uniqueness Theorem for a Surface Wave Problem in Electromagnetic Diffraction Theory*, Comm. Pure and Appl. Math., Vol. 16, 1963, pp 45-56. Also New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. EM-178, 1962. MR**0149079****[5]**W. Magnus, and F. Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics, 2nd Ed.; Berlin, Springer, 1948**[6]**R. C. Morgan,*Uniqueness Theorem for a Multi-Mode Surface Wave Problem in Electromagnetic Diffraction Theory*, New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. EM-212, 1965

Additional Information

DOI:
https://doi.org/10.1090/qam/99917

Article copyright:
© Copyright 1966
American Mathematical Society