Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Pseudo-similarity solutions of the one-dimensional diffusion equation with applications to the phase change problem

Author: David Langford
Journal: Quart. Appl. Math. 25 (1967), 45-52
MSC: Primary 35.62; Secondary 80.00
DOI: https://doi.org/10.1090/qam/209686
MathSciNet review: 209686
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: New solutions of the diffusion equation may be used to prescribe both the diffusion potential and the diffusional flow rate, along the moving curve $ X = \alpha {\left( {1 + \beta \cdot T} \right)^{1/2}}$, as arbitrary power series in the variable $ \left( {\alpha {{\left( {1 + \beta \cdot T} \right)}^{1/2}}} \right)$, where $ \alpha $ and $ \beta $ are arbitrary constants and $ T$ is time.

References [Enhancements On Off] (What's this?)

  • [1] Milton Abramowitz and Irene A. Stegun, Ed., Handbook of mathematical functions, U. S. National Bureau of Standards, Applied Mathematics Series #55, Washington, D. C., June 1964. Second printing, with corrections, Nov. 1964 MR 0167642
  • [2] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2nd Ed. Oxford Univ. Press, London, 1959 MR 0022294
  • [3] Ruel V. Churchill, Operational mathematics, 2nd Ed. McGraw-Hill, New York, 1958; p. 259 and chapter 9 MR 0108696
  • [4] F. C. Frank, Radially symmetric phase growth controlled by diffusion, Proc. Roy. Soc. Ser. A 201, 586-599 (1950) MR 0036925
  • [5] A. Huber, On the propagation of the melting boundary in a linear conductor (Über das Fortschreiten der Schmelzgrenze in einen linearen Leiter), Z. Angew. Math. Mech. 19, 1-21 (1939). (In German). (Cited by Carslaw and Jaeger [2] and Frank [4])
  • [6] Lamé and Clapeyron, Memorandum on the solidification by freezing of a liquid sphere, (Memoire sur la solidification par refroidissement d'un globe liquide). Ann. Chimie et Physique, 47, 250-256 (1831). (In French)
  • [7] David Langford, A closed form solution for the constant velocity solidification of spheres initially at the fusion temperature, British J. Applied Physics 17(2), 286 (Feb. 1966)
  • [8] David Langford, The freezing of spheres, Int. J. Heat and Mass Transfer, 9(8), 827-828 (August 1966)
  • [9] David Langford, Stefan's melting problem, Doctoral Dissertation, Rensselaer Polytechnic Institute, Troy, N. Y., January 1965
  • [10] G. A. Martynov, Solution of the inverse Stefan problem in the case of spherical symmetry, Soviet Physics--Technical Physics, 5(2), 215-218 (Aug. 1960). Translated from Zhurnal Tekhnicheskoi Fiziki, 30(2), 239-241 (Feb. 1960) MR 0113592
  • [11] D. V. Redozubov, The solution of certain types of linear thermal problems in limited and semiinfinite regions with motion of the boundary according to $ \alpha \beta {\left( t \right)^{1/2}}$ law, Soviet Physics--Technical Physics, 7(5), 459-461 (Nov. 1962). Translated from Zhurnal Tekhnicheskoi Fiziki, 32(5), 632-637 (May 1962)
  • [12] J. Stefan, On the theory of ice formation, especially on ice formation in polar seas, (Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere). Sitzungsberichte der Ka[ill]rlichen Akademie Wiss. Wien., Math.-naturwiss. Kl, 98(2a), 965-983 (1890). (In German)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35.62, 80.00

Retrieve articles in all journals with MSC: 35.62, 80.00

Additional Information

DOI: https://doi.org/10.1090/qam/209686
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society