Pseudo-similarity solutions of the one-dimensional diffusion equation with applications to the phase change problem

Author:
David Langford

Journal:
Quart. Appl. Math. **25** (1967), 45-52

MSC:
Primary 35.62; Secondary 80.00

DOI:
https://doi.org/10.1090/qam/209686

MathSciNet review:
209686

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: New solutions of the diffusion equation may be used to prescribe both the diffusion potential and the diffusional flow rate, along the moving curve , as arbitrary power series in the variable , where and are arbitrary constants and is time.

**[1]**Milton Abramowitz and Irene A. Stegun, Ed.,*Handbook of mathematical functions*, U. S. National Bureau of Standards, Applied Mathematics Series #55, Washington, D. C., June 1964. Second printing, with corrections, Nov. 1964 MR**0167642****[2]**H. S. Carslaw and J. C. Jaeger,*Conduction of heat in solids*, 2nd Ed. Oxford Univ. Press, London, 1959 MR**0022294****[3]**Ruel V. Churchill,*Operational mathematics*, 2nd Ed. McGraw-Hill, New York, 1958; p. 259 and chapter 9 MR**0108696****[4]**F. C. Frank,*Radially symmetric phase growth controlled by diffusion*, Proc. Roy. Soc. Ser.**A 201**, 586-599 (1950) MR**0036925****[5]**A. Huber,*On the propagation of the melting boundary in a linear conductor*(Über das Fortschreiten der Schmelzgrenze in einen linearen Leiter), Z. Angew. Math. Mech.**19**, 1-21 (1939). (In German). (Cited by Carslaw and Jaeger [2] and Frank [4])**[6]**Lamé and Clapeyron,*Memorandum on the solidification by freezing of a liquid sphere*, (Memoire sur la solidification par refroidissement d'un globe liquide). Ann. Chimie et Physique, 47, 250-256 (1831). (In French)**[7]**David Langford,*A closed form solution for the constant velocity solidification of spheres initially at the fusion temperature*, British J. Applied Physics**17**(2), 286 (Feb. 1966)**[8]**David Langford,*The freezing of spheres*, Int. J. Heat and Mass Transfer,**9**(8), 827-828 (August 1966)**[9]**David Langford,*Stefan's melting problem*, Doctoral Dissertation, Rensselaer Polytechnic Institute, Troy, N. Y., January 1965**[10]**G. A. Martynov,*Solution of the inverse Stefan problem in the case of spherical symmetry*, Soviet Physics--Technical Physics,**5**(2), 215-218 (Aug. 1960). Translated from Zhurnal Tekhnicheskoi Fiziki,**30**(2), 239-241 (Feb. 1960) MR**0113592****[11]**D. V. Redozubov,*The solution of certain types of linear thermal problems in limited and semiinfinite regions with motion of the boundary according to law*, Soviet Physics--Technical Physics, 7(5), 459-461 (Nov. 1962). Translated from Zhurnal Tekhnicheskoi Fiziki,**32**(5), 632-637 (May 1962)**[12]**J. Stefan,*On the theory of ice formation, especially on ice formation in polar seas*, (Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere). Sitzungsberichte der Ka[ill]rlichen Akademie Wiss. Wien., Math.-naturwiss. Kl,**98**(2a), 965-983 (1890). (In German)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35.62,
80.00

Retrieve articles in all journals with MSC: 35.62, 80.00

Additional Information

DOI:
https://doi.org/10.1090/qam/209686

Article copyright:
© Copyright 1967
American Mathematical Society