Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A numerical determination of subharmonic response for the Duffing equation $ \ddot x+\alpha x+\beta x^3=f\operatorname{cos}\omega t\ (\alpha>0)^*$

Author: Morris E. Levenson
Journal: Quart. Appl. Math. 25 (1967), 11-17
DOI: https://doi.org/10.1090/qam/99909
MathSciNet review: QAM99909
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] K. O. Friedrichs, Justification of the perturbation method, Lectures delivered at Brown University, Dec. 5, 1942; Jan. 23, 1943
  • [2] K. S. Kunz, Numerical analysis, McGraw-Hill, New York, 1957 MR 0088045
  • [3] M. E. Levenson, Harmonic and subharmonic response for the Duffing equation, Doctoral Dissertation, New York University, 1948; abridgment, J. Appl. Phys., 20 (1949) MR 0033426
  • [4] J. J. Stoker, Nonlinear vibrations, Interscience, New York, 1950 MR 0034932

Additional Information

DOI: https://doi.org/10.1090/qam/99909
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society