Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Finite amplitute oscillations in curvilinearly aeolotropic elastic sylinders

Author: R. R. Huilgol
Journal: Quart. Appl. Math. 25 (1967), 293-298
DOI: https://doi.org/10.1090/qam/99895
MathSciNet review: QAM99895
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. L. Ericksen and R. S. Rivlin, Large elastic deformation of homogenous anisotropic materials, J. Rational Mech. Anal. 3, 281-301 (1954) MR 0063232
  • [2] A. E. Green and J. E. Adkins, Large elastic deformations and Nonlinear continuum mechanics, Clarendon Press, Oxford, 1960 MR 0269158
  • [3] R. R. Huilgol, A finite deformation possible in transversely isotropic materials, to be published in ZAMP
  • [4] M. Singh and A. C. Pipkin, Note on Ericksen's problem, Zeit. Angew Math. Phys. 16, 706-709 (1965)
  • [5] R. R. Huilgol, Certain dynamics problems in finite deformations of transversely isotropic elastic materials, to be published
  • [6] J. K. Knowles, Large amplitude oscillations of a tube of incompressible elastic materials, Quart. Appl. Math. 18, 71-77 (1960) MR 0112336
  • [7] J. K. Knowles, On a class of oscillations in the finite-deformation theory of elasticity, J. Appl. Mech. 29, 283-286 (1961) MR 0137346
  • [8] Guo Zhong-Heng and R. Solecki, Free and forced finite-amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material, Arch. Mech. Stos. 15, 427-433 (1963) MR 0163494
  • [9] J. K. Knowles and M. T. Jakub, Finite dynamic deformations of an incompressible elastic medium containing a spherical cavity, Arch. Rational Mech. Anal. 18, 367-378 (1965) MR 0174206
  • [10] C.-C. Wang, On the radial oscillations of a spherical thin shell in the finite elasticity theory, Quart. Appl. Math. 23, 270-274 (1965) MR 0187477
  • [11] C. Truesdell, Solutio generalis et accurata problemaium quamplurimorum de motu corporum elasticorum incompribilium in deformationibus valde magnis, Arch. Rational Mech. Anal. 11, 106-113 (1962); Addendum, ibid, 12, 427-428 (1963) MR 0145725
  • [12] C. Truesdell and W. Noll, The nonlinear field theories of mechanics, Encyclopaedia of Physics, Ed. S. Flügge, Vol. III/3, Springer-Verlag, Berlin, 1965, Sees. 61-62 MR 1215940
  • [13] C. Truesdell, The mechanical foundations of elasticity and fluid dynamics, J. Rational Mech. Anal. 1, 125-300 (1952) MR 0046838
  • [14] M. Baker and J. L. Ericksen, Inequalities restricting the form of the stress-deformations relations for isotropic elastic solids and Reiner-Rivlin fluids, J. Wash. Acad. Sci. 44, 33-35 (1954) MR 0063235
  • [15] R. S. Rivlin and D. W. Saunders, Large elastic deformation of isotropic materials. VII, Experiments of the deformation of rubber, Phil. Trans. Roy. Soc. London (A) 243, 251-288 (1951)
  • [16] W. S. Blackburn, Second-order effects in the torsion and bending of transversely isotropic incompressible elastic beams, Quart. J. Mech. Appl. Math. 11, 142-158 (1958) MR 0093132

Additional Information

DOI: https://doi.org/10.1090/qam/99895
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society