Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Elastostatic boundary regiou problem in solid cylinders

Authors: Robert Wm. Little and S. Bart Childs
Journal: Quart. Appl. Math. 25 (1967), 261-274
DOI: https://doi.org/10.1090/qam/99898
MathSciNet review: QAM99898
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. W. Johnson, Jr. and R. W. Little, The semi-infinite elastic strip, Quart. Appl. Math. 23, 335-344 (1965) MR 0187479
  • [2] G. Horvay and J. A. Mirabal, The end problem of cylinders, J. Appl. Mech. (4) 25, 561-570 (1958) MR 0102948
  • [3] W. R. Hodgkins, A numerical solution of the end deformation problem of a cylinder, U. K. Atomic Energy Authority TRG Report 294
  • 1. [4[ A. Mendelson and E. Roberts, Jr., The axisymmetric stress distribution in finite cylinders, 8th Mid-western Mechanics Conference, April 1963
  • [5] F. H. Murray, Thermal stresses and strains in a finite cylinder with no surface forces, Atomic Energy Commission Paper No. 2966, 1945
  • [6] D. Horvay, I. Giaver, and J. A. Mirabal, Thermal stresses in a heat-generating cylinder: the variational solution of a boundary layer problem in three-dimensional elasticity, Ingr. Arch XXVII, 179-194 (1959)
  • [7] C. K. Youngdahl and E. Sternberg, Transient thermal stresses in a circular cylinder, Brown University Technical Report No. 8, 1960 MR 0118103
  • [8] A. E. H. Love, A treatise on the mathematical theory of elasticity, Dover Publications, New York, 1944 MR 0010851
  • [9] Gerald Pickett, Application of the Fourier method to the solution of certain boundary problems in the theory of elasticity, Trans. ASME 66, A-176-182 (1944) MR 0010853
  • [10] M. I. Gusein-Zade, On the conditions of existence of decaying solutions cf the two-dimensional problem of the theory of elasticity for a semi-infinite strip, PMM, (2) 29, 393-399 (1965) MR 0195310
  • [11] P. F. Papkovich, On one form of solution of the plane problem of the theory of elasticity for the rectangular strip, Dokl. Akad. Nauk. SSSR, (4) 27, (1940)
  • [12] V. K. Prokopov, On the relation of the generalized orthogonality of P. F. Papkovich for rectangular plates, PMM (2) 28, 351-355 (1964) MR 0178622

Additional Information

DOI: https://doi.org/10.1090/qam/99898
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society