Elastostatic boundary regiou problem in solid cylinders

Authors:
Robert Wm. Little and S. Bart Childs

Journal:
Quart. Appl. Math. **25** (1967), 261-274

DOI:
https://doi.org/10.1090/qam/99898

MathSciNet review:
QAM99898

Full-text PDF

References | Additional Information

**[1]**M. W. Johnson Jr. and R. W. Little,*The semi-infinite elastic strip*, Quart. Appl. Math.**22**(1965), 335–344. MR**0187479**, https://doi.org/10.1090/S0033-569X-1965-0187479-3**[2]**G. Horvay and J. A. Mirabal,*The end problem of cylinders*, J. Appl. Mech.**25**(1958), 561–570. MR**0102948****[3]**W. R. Hodgkins,*A numerical solution of the end deformation problem of a cylinder*, U. K. Atomic Energy Authority TRG Report 294**1.**[4[ A. Mendelson and E. Roberts, Jr.,*The axisymmetric stress distribution in finite cylinders*, 8th Mid-western Mechanics Conference, April 1963**[5]**F. H. Murray,*Thermal stresses and strains in a finite cylinder with no surface forces*, Atomic Energy Commission Paper No. 2966, 1945**[6]**D. Horvay, I. Giaver, and J. A. Mirabal,*Thermal stresses in a heat-generating cylinder: the variational solution of a boundary layer problem in three-dimensional elasticity*, Ingr. Arch XXVII, 179-194 (1959)**[7]**C. K. Youngdahl and Eli Sternberg,*Transient thermal stresses in a circular cylinder*, J. Appl. Mech.**28**(1961), 25–34. MR**0118103****[8]**A. E. H. Love,*A treatise on the Mathematical Theory of Elasticity*, Dover Publications, New York, 1944. Fourth Ed. MR**0010851****[9]**Gerald Pickett,*Application of the Fourier method to the solution of certain boundary problems in the theory of elasticity*, J. Appl. Mech.**11**(1944), A-176–A-182. MR**0010853****[10]**M. I. Guseĭn-Zade,*On the conditions of existence of decaying solutions of the two-dimensional problem of the theory of elasticity for a semi-infinite strip*, J. Appl. Math. Mech.**29**(1965), 447–454 (1966). MR**0195310**, https://doi.org/10.1016/0021-8928(65)90053-5**[11]**P. F. Papkovich,*On one form of solution of the plane problem of the theory of elasticity for the rectangular strip*, Dokl. Akad. Nauk. SSSR, (4)**27**, (1940)**[12]**V. K. Prokopov,*On the relation of the generalized orthogonality of P. F. Papkovich for rectangular plates*, J. Appl. Math. Mech.**28**(1964), 428–433. MR**0178622**, https://doi.org/10.1016/0021-8928(64)90175-3

Additional Information

DOI:
https://doi.org/10.1090/qam/99898

Article copyright:
© Copyright 1967
American Mathematical Society