Elastostatic boundary regiou problem in solid cylinders

Authors:
Robert Wm. Little and S. Bart Childs

Journal:
Quart. Appl. Math. **25** (1967), 261-274

DOI:
https://doi.org/10.1090/qam/99898

MathSciNet review:
QAM99898

Full-text PDF Free Access

References | Additional Information

**[1]**M. W. Johnson, Jr. and R. W. Little,*The semi-infinite elastic strip*, Quart. Appl. Math.**23**, 335-344 (1965) MR**0187479****[2]**G. Horvay and J. A. Mirabal,*The end problem of cylinders*, J. Appl. Mech. (4)**25**, 561-570 (1958) MR**0102948****[3]**W. R. Hodgkins,*A numerical solution of the end deformation problem of a cylinder*, U. K. Atomic Energy Authority TRG Report 294**1.**[4[ A. Mendelson and E. Roberts, Jr.,*The axisymmetric stress distribution in finite cylinders*, 8th Mid-western Mechanics Conference, April 1963**[5]**F. H. Murray,*Thermal stresses and strains in a finite cylinder with no surface forces*, Atomic Energy Commission Paper No. 2966, 1945**[6]**D. Horvay, I. Giaver, and J. A. Mirabal,*Thermal stresses in a heat-generating cylinder: the variational solution of a boundary layer problem in three-dimensional elasticity*, Ingr. Arch XXVII, 179-194 (1959)**[7]**C. K. Youngdahl and E. Sternberg,*Transient thermal stresses in a circular cylinder*, Brown University Technical Report No. 8, 1960 MR**0118103****[8]**A. E. H. Love,*A treatise on the mathematical theory of elasticity*, Dover Publications, New York, 1944 MR**0010851****[9]**Gerald Pickett,*Application of the Fourier method to the solution of certain boundary problems in the theory of elasticity*, Trans. ASME**66**, A-176-182 (1944) MR**0010853****[10]**M. I. Gusein-Zade,*On the conditions of existence of decaying solutions cf the two-dimensional problem of the theory of elasticity for a semi-infinite strip*, PMM, (2)**29**, 393-399 (1965) MR**0195310****[11]**P. F. Papkovich,*On one form of solution of the plane problem of the theory of elasticity for the rectangular strip*, Dokl. Akad. Nauk. SSSR, (4)**27**, (1940)**[12]**V. K. Prokopov,*On the relation of the generalized orthogonality of P. F. Papkovich for rectangular plates*, PMM (2)**28**, 351-355 (1964) MR**0178622**

Additional Information

DOI:
https://doi.org/10.1090/qam/99898

Article copyright:
© Copyright 1967
American Mathematical Society