Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The construction of difference approximations from a ``sensitized functional"


Author: A. K. Rigler
Journal: Quart. Appl. Math. 26 (1968), 288-290
DOI: https://doi.org/10.1090/qam/99852
MathSciNet review: QAM99852
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: A technique from the calculus of variations is used to derive higher order difference approximations.


References [Enhancements On Off] (What's this?)

  • [1] M. Tanrikulu and W. Prager, On the construction of Hermitian from Lagrangian difference approximations, Quart. Appl. Math. XXIV, 371-373 (1967) MR 0218035
  • [2] B. Meister and W. Prager, On the construction of symmetric difference operators for square and cubic lattices, Z. Angew. Math. Phys. 16, 403-410 (1965) MR 0186955
  • [3] J. H. Bramble and B. E. Hubbard, New monotone approximations for elliptic problems, Math. of Comp. XVIII, 349-367 (1964)
  • [4] M. Engeli, Th. Ginsburg, H. Rutishauser, and E. Stiefel, Refined iterative methods for computation of the solution and eigenvalues of self adjoint boundary value problems, Birkhauser Verlag, Basel/Stuttgart 1959, Chapter one MR 0145689
  • [5] R. Courant, Uber ein konvergenzerzeugendes Prinzip in der Variationsrechnung, Gottingen Ges. d. Wissensch., 144-150 (1922)
  • [6] R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc. 49, 1-23 (1943) MR 0007838
  • [7] R. Courant, Remarks about the Rayleigh-Ritz method, Boundary Problems in Differential Equations, University of Wisconsin Press, Madison, 1960 MR 0117889


Additional Information

DOI: https://doi.org/10.1090/qam/99852
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society