Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A bound for entire harmonic functions of three variables

Author: Chi Yeung Lo
Journal: Quart. Appl. Math. 26 (1968), 451-455
MSC: Primary 31.11
DOI: https://doi.org/10.1090/qam/239106
MathSciNet review: 239106
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. Bergman, Some properties of a harmonic function of three variables given by its series development, Arch. Rational Mech. Anal. 8, 207-222 (1961) MR 0136752
  • [2] S. Bergman, Sur les singularités des fonctions harmoniques de trois variables, Comptes rendus des seances de l'Academie des Sciences 254, 3482-3483 (1962) MR 0159011
  • [3] P. Dienes, The Taylor series, Dover, New York, 1957 MR 0089895
  • [4] B. A. Fuks, Introduction to the theory of analytic functions of several complex variables, Transl. Math. Monographs, Vol. 8, Amer. Math. Soc., Providence, R. I., 1963 MR 0168793
  • [5] R. P. Gilbert, Singularities of three dimensional harmonic functions, Pacific J. Math 10, 1243-1255 (1961) MR 0120477
  • [6] R. P. Gilbert, Some inequalities for generalized axially symmetric potentials with entire and meromorphic associates, Duke Math. J. 32, 239-245 (1965) MR 0182794

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 31.11

Retrieve articles in all journals with MSC: 31.11

Additional Information

DOI: https://doi.org/10.1090/qam/239106
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society