Dispersion relations, stored energy and group velocity for anisotropic electromagnetic media

Author:
H. Kurss

Journal:
Quart. Appl. Math. **26** (1968), 373-387

DOI:
https://doi.org/10.1090/qam/99846

MathSciNet review:
QAM99846

Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: The Hermitian and skew-Hermitian components of the susceptibility matrix of a general linear electromagnetic medium are represented as Hilbert transforms of each other. These so-called dispersion relations lead to *a priori* inequalities which must be satisfied by the susceptibility of a passive medium in a frequency interval in which the medium is lossless. One such inequality states that the stored energy density for a given and is always greater than in free space. This is also verified directly from the usual gyrotropic susceptibilities of ferrites and plasmas.

**[1]**L. D. Landau and E. M. Lifshitz,*Electrodynamics of continuous media*, Pergamon, New York, 1960, pp. 247-267**[2]**L. Page and N. I. Adams,*Electrodynamics*, D. Van Nostrand, New York, 1940, p. 405**[3]**B. D. H. Tellegen,*The gyrator, a new electric network element*, Philips Res. Rep.,**3**, 81-101 (1948)**[4]**LL. G. Chambers,*Propagation in a gyrational medium*, Quart J. Mech. Appl. Math.**9**, 360-370 (1956)**[5]**B. S. Gourary,*Dispersion relations for tensor media and their application to ferrites*, J. Appl. Phys.**28**, 283-288 (1957)**[6]**D. Polder,*On the theory of ferromagnetic resonance*, Phil. Mag.**40**, 99-115 (1949)**[7]**E. Astrom,*On waves in an ionized gas*, Arkiv Fysik**2**, 443-157 (1951) MR**0040995****[8]**C. O. Hines,*Wave packets, the Poynting vector and energy flow*, J. Geophysics Res.**56**, 63, 107, 207, 535 (1951)**[9]**T. H. Stix,*The theory of plasma waves*, McGraw-Hill, New York, 1962, pp. 45-52 MR**0153425****[10]**W. P. Allis, S. J. Buchsbaum and A. Bers,*Waves in anisotropic plasmas*, M.I.T. Press, Cambridge, Mass., 1963, pp. 95-131**[11]**F. E. Borgnis and C. H. Papas,*Handbuch der Physik*, Springer, Berlin, 1958, p. 289 and p. 312 MR**0106022****[12]**D. A. Watkins,*Topics in electromagnetic theory*, Wiley, New York, 1958, pp. 12-14**[13]**E. H. Wagner,*Uber Gruppengeschwindigkeit, Energiestromdichte und Energiedichte in der Rontgenbezw Lichtoptik der Kristalle*, Zeit. fur Physik**154**, 352-360 (1959)**[14]**H. L. Bertoni and A. Hessel,*Group velocity and power flow relations for surface waves in plane-stratified anisotropic media*, IEEE Trans, on Antennas and Propagation,**AP-14**, 344-352 (1966)**[15]**C. G. Montgomery, R. H. Dicke and E. M. Purcell,*Principles of microwave circuits*, McGraw-Hill, New York, 1948, pp. 151-152 MR**0032476****[16]**J. S. Toll,*Causality and the dispersion relation: logical foundations*, Phys. Rev.**104**, 1760-1770 (1956) MR**0083623****[17]**J. A. Stratton,*Electromagnetic theory*, McGraw-Hill, New York, 1941, p. 137**[18]**L. Brillouin,*Wave propagation and group velocity*, Academic Press, New York, 1960, pp. 88-93 MR**0108217****[19]**A. Tonning,*Energy density in continuous electromagnetic media*, IRE Trans, on Antennas and Propagation,**AP-8**, 428-434 (1960)**[20]**M. Leontovitch,*Generalization of the Kramers-Kronig formulas to media with spatial dispersion*, Soviet Physics-JETP**13**, 634-637 (1961) MR**0129281**

Additional Information

DOI:
https://doi.org/10.1090/qam/99846

Article copyright:
© Copyright 1968
American Mathematical Society