Uniqueness theorem for a multi-mode surface wave diffraction problem.

Author:
R. C. Morgan

Journal:
Quart. Appl. Math. **26** (1969), 601-604

MSC:
Primary 35.75

DOI:
https://doi.org/10.1090/qam/236535

MathSciNet review:
236535

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Uniqueness is demonstrated for the solution to the reduced wave equation subject to a mixed boundary value condition that excites two surface wave modes. The configuration is taken as a right-angled wedge and the edge condition assumed has the form

**[1]**R. C. Morgan, S. N. Karp and F. C. Karal,*Multi-mode surface wave diffraction by a right-angled wedge*, Quart. Appl. Math.**24**, 263-266 (1966); New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. EM-213, 1965**[2]**R. C. Morgan and S. N. Karp,*Uniqueness theorem for a surface wave problem in electromagnetic diffraction theory*, Comm. Pure Appl. Math.**16**, 45-56 (1963); New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. EM-178, 1962 MR**0149079****[3]**A. S. Peters and J. J. Stoker,*A uniqueness theorem and a new solution for Sommerfeld's and other diffraction problems*, Comm. Pure Appl. Math.**7**, 565-585 (1954) MR**0063539****[4]**R. C. Morgan,*Pseudo-radiation conditions for derivatives of radiating functions*, J. Math. Anal. Appl.**18**, No. 3 (1967); New York Univ., Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. BR-54, 1966 MR**0213102****[5]**R. C. Morgan,*Uniqueness theorem for the reduced wave equation under an Nth order differential boundary condition*, Proc. Amer. Math. Soc.**17**, 780-787 (1966); New York University, Courant Inst. Math. Sci., Div. of Electromagnetic Res., Res. Rep. No. BR-53, 1966 MR**0203279**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35.75

Retrieve articles in all journals with MSC: 35.75

Additional Information

DOI:
https://doi.org/10.1090/qam/236535

Article copyright:
© Copyright 1969
American Mathematical Society