Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On nonlinear stability theory


Author: A. J. Pritchard
Journal: Quart. Appl. Math. 27 (1970), 531-536
DOI: https://doi.org/10.1090/qam/255131
MathSciNet review: 255131
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. D. Landau and E. M. Lifschitz, Fluid mechanics, Pergamon Press, Elmsford, N. Y., 1959
  • [2] A. Davey, R. C. Di Prima and J. T. Stuart, On the instability of Taylor vortices, J. Fluid Mech. 31, 17-52 (1968)
  • [3] W. Eckhaus, Studies in non-linear stability theory, in Tracts in natural philosophy, Vol. 6, Springer-Verlag, New York, 1965 MR 0196298
  • [4] A. A. Movchan, Stability of processes with respect to two metrics, Prikl. Mat. Meh. (6) 24 (1960)
  • [5] A. A. Movchan, On Liapunov's direct method in problems of stability of elastic systems, Prikl. Mat. Meh. (3) 23 (1959)
  • [6] R, Knops and E. Wilkes, On Movchan's theorems for stability of continuous systems, Internat. J. Engrg. Sci. 4, 303-329 (1966) MR 0205533
  • [7] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Advances in Appl. Mech. Vol. I, Academic Press, N. Y., 1948 MR 0027195
  • [8] G. R. Buis and W. G. Vogt, Application of Liapunov stability theory to some nonlinear problems in hydrodynamics, NASA report CR-894, September 1967
  • [9] J. T. Stuart, Contribution to Stability of systems, Proc. Inst. Mech. Engrs. (3M) 178, 54-55 (1965)


Additional Information

DOI: https://doi.org/10.1090/qam/255131
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society