Two extending crack problems in linear viscoelasticity theory

Author:
G. A. C. Graham

Journal:
Quart. Appl. Math. **27** (1970), 497-507

DOI:
https://doi.org/10.1090/qam/99809

MathSciNet review:
QAM99809

Full-text PDF Free Access

References | Additional Information

**[1]**E. H. Lee,*Stress analysis in visco-elastic bodies*, Quart. Appl. Math. (2)**13**, 183-190 (1955) MR**0069741****[2]**M. L. Williams, P. J. Blataz and R. A. Schapery,*Fundamental studies relating to systems analysis of solid propellants*, Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadena, Calif., 1961**[3]**M. L. Williams,*Initiation and growth of viscoelastic fracture*, Internat. J. Fracture Mechanics (4)**1**, 292-310 (1965)**[4]**J. R. Willis,*Crack propagation in viscoelastic media*, J. Mech. Phys. Solids (4)**15**, 229-240 (1967)**[5]**G. A. C. Graham,*The correspondence principle of linear viscoelasticity theory for mixed boundary value problems involving time-dependent boundary regions*, Quart. Appl. Math. (2)**26**, 167-174 (1968)**[6]**A. A. Griffith,*The theory of rupture*, Proc. 1st Internat. Congress Appl. Mech. Delft, 55-63 (1924)**[7]**I. N. Sneddon,*The distribution of stress in the neighborhood of a crack in an elastic solid*, Proc. Royal Soc. Ser.**A187**, 229-260 (1946) MR**0017160****[8]**I. N. Sneddon,*The use of transform methods in elasticity*, Applied Mathematics Research Group, North Carolina State University, Raleigh, N. C., 1964**[9]**M. E. Gurtin and E. Sternberg,*On the linear theory of viscoelasticity*, Arch. Rational Mech. Anal. (4)**11**, 291-356 (1962) MR**0147047****[10]**I. S. Sokolnikoff,*Mathematical theory of elasticity*, McGraw-Hill, New York, 1956 MR**0075755****[11]**R. S. Rivlin and A. G. Thomas,*Rupture of rubber*. I:*Characteristic energy for tearing*, J. Polymer Sci. (3)**10**, 291-318 (1953)**[12]**I. N. Sneddon,*A note on the problem of the penny shaped crack*, Proc. Cambridge Philos. Soc.**61**609-611 (1965) MR**0174223**

Additional Information

DOI:
https://doi.org/10.1090/qam/99809

Article copyright:
© Copyright 1970
American Mathematical Society