Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Two extending crack problems in linear viscoelasticity theory


Author: G. A. C. Graham
Journal: Quart. Appl. Math. 27 (1970), 497-507
DOI: https://doi.org/10.1090/qam/99809
MathSciNet review: QAM99809
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] E. H. Lee, Stress analysis in visco-elastic bodies, Quart. Appl. Math. 13 (1955), 183–190. MR 0069741, https://doi.org/10.1090/S0033-569X-1955-69741-6
  • [2] M. L. Williams, P. J. Blataz and R. A. Schapery, Fundamental studies relating to systems analysis of solid propellants, Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadena, Calif., 1961
  • [3] M. L. Williams, Initiation and growth of viscoelastic fracture, Internat. J. Fracture Mechanics (4) 1, 292-310 (1965)
  • [4] J. R. Willis, Crack propagation in viscoelastic media, J. Mech. Phys. Solids (4) 15, 229-240 (1967)
  • [5] G. A. C. Graham, The correspondence principle of linear viscoelasticity theory for mixed boundary value problems involving time-dependent boundary regions, Quart. Appl. Math. (2) 26, 167-174 (1968)
  • [6] A. A. Griffith, The theory of rupture, Proc. 1st Internat. Congress Appl. Mech. Delft, 55-63 (1924)
  • [7] I. N. Sneddon, The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. Roy. Soc. London. Ser. A. 187 (1946), 229–260. MR 0017160, https://doi.org/10.1098/rspa.1946.0077
  • [8] I. N. Sneddon, The use of transform methods in elasticity, Applied Mathematics Research Group, North Carolina State University, Raleigh, N. C., 1964
  • [9] M. E. Gurtin and Eli Sternberg, On the linear theory of viscoelasticity, Arch. Rational Mech. Anal. 11 (1962), 291–356. MR 0147047, https://doi.org/10.1007/BF00253942
  • [10] I. S. Sokolnikoff, Mathematical theory of elasticity, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956. 2d ed. MR 0075755
  • [11] R. S. Rivlin and A. G. Thomas, Rupture of rubber. I: Characteristic energy for tearing, J. Polymer Sci. (3) 10, 291-318 (1953)
  • [12] Ian N. Sneddon, A note on the problem of the penny-shaped crack, Proc. Cambridge Philos. Soc. 61 (1965), 609–611. MR 0174223


Additional Information

DOI: https://doi.org/10.1090/qam/99809
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society