Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Nonlinear diffusion induced by nonlinear sources


Authors: D. D. Joseph and E. M. Sparrow
Journal: Quart. Appl. Math. 28 (1970), 327-342
MSC: Primary 80.35
DOI: https://doi.org/10.1090/qam/272272
MathSciNet review: 272272
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] D. D. Joseph, Bounds on $ \lambda $ for positive solutions of $ \Delta \psi + \lambda f\left( r \right)\left\{ {\psi + G\left( \psi \right)} \right\} = 0$, Quart. Appl. Math. 23, 349-354 (1966) MR 0194732
  • [2] M. Jakob, Heat transfer, Vol. 1, Chap. 10, Wiley, New York, 1949
  • [3] P. J. Schneider, Conduction heat transfer, Chap. 8, Addison-Wesley, Reading, Mass., 1955
  • [4] D. D. Joseph, Non-linear heat generation and stability of the temperature distribution in conducting solids, Int. J. Heat Mass Transfer 8, 281-288 (1965)
  • [5] P. J. Torvic, Temperature rise and stresses due to internal heating, preprint 68-HT-37, Amer. Soc. Mech. Engrs., 1968
  • [6] D. Luss and N. R. Amundson, Uniqueness of the steady state solutions for chemical reaction occurring in a catalyst particle or in a tubular reactor with axial diffusion, Chem. Engng. Sci. 22, 253-266 (1967)
  • [7] D. Luss, Sufficient conditions for uniqueness of the steady state solutions in distributed parameter systems, Chem. Engng. Sci. 23, 1249-1255 (1968)
  • [8] D. Luss, On the uniqueness of a large distributed parameter system with chemical reaction and heat and mass diffusion, Chem. Engng. Sci. 24, 879-883 (1969)
  • [9] D. Luss and J. C. M. Lee, On global stability in distributed parameter systems, Chem. Engng. Sci. 23, 1237-1248 (1968)
  • [10] I. M. Gel'fand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. (2) 29, 295-381 (1963), MR 0153960
  • [11] H. Fujita, On the nonlinear equations $ \Delta u + {e^u} = 0$ and $ \partial \upsilon /\partial t = \Delta \upsilon + {e^\upsilon }$, Bull. Amer. Math. Soc. 75, 132-135 (1969) MR 0239258
  • [12] S. A. Regirer, The influence of thermal effects on the viscous resistance of a steady uniform flow of liquid, J. Appl. Math. Mech. 22, 580-586 (1958) MR 0102289
  • [13] S. A. Kaganov, Establishing laminar flow for an incompressible liquid in a horizontal channel and a curved cylindrical tube with corrections for frictional heat and the temperature dependence of viscosity, Int. Chem. Engng. 3, 33-35 (1963)
  • [14] R. E. Colwell and K. R. Nickolls, The screw extruder, Ind. Engng. Chem. 51, 841-843 (1959)
  • [15] D. D. Joseph, Variable viscosity effects on the flow and stability of flow in channels and pipes, Phys. Fluids 7, 1761-1771 (1964)
  • [16] J. Gavis and R. L. Laurence, Viscous heating in plane and circular flow between moving surfaces, I and EC Fundamentals 7, 232-239 (1968)
  • [17] J. Gavis and R. L. Laurence, Viscous heating of a power-law liquid in plane flow, I and EC Fundamentals 7, 525-527 (1968)
  • [18] W. K. Ergun, Self-limiting power excursions in large reactors, Trans. Amer. Nuclear Soc. 8, 221 (1965)
  • [19] D. S. Cohen, Positive solutions of nonlinear eigenvalue problems: Applications to nonlinear reactor dynamics, Arch. Rational Mech. Anal. 26, 305-315 (1967) MR 0216159
  • [20] D. S. Cohen, Correction to reference 19, Arch. Rational Mech. Anal. 30, 401 (1968) MR 0232084
  • [21] D. Luss and N. R. Amundson, Uniqueness of the steady state for an isothermal porous catalyst, I and EC Fundamentals 6, 457-459 (1967)
  • [22] H. B. Keller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16, 1361-1376 (1967) MR 0213694
  • [23] D. S. Cohen, Positive solutions of a class of nonlinear eigenvalue problems, J. Math. Mech. 17, 209-215 (1967) MR 0213695
  • [24] H. B. Keller, Nonexistence and uniqueness of positive solutions of nonlinear eigenvalue problems, Bull. Amer. Math. Soc. 74, 887-891 (1968) MR 0229985
  • [25] M. M. Vainberg and V. A. Trenogin, The Lyapunov and Schmidt methods in the theory of non-linear equations and their subsequent development, Russian Math. Surveys 17, no. 2, 1-60 (1962) MR 0154113

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 80.35

Retrieve articles in all journals with MSC: 80.35


Additional Information

DOI: https://doi.org/10.1090/qam/272272
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society