Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Separation-of-variables solution from the Schwarz-Christoffel transformation

Author: W. B. Joyce
Journal: Quart. Appl. Math. 28 (1970), 383-390
DOI: https://doi.org/10.1090/qam/99785
MathSciNet review: QAM99785
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] W. R. Smythe, Static and dynamic electricity, 3rd ed., McGraw-Hill, New York, 1968
  • [2] E. Durand, Électrostatique, Vol. II, Masson, Paris, 1966.
  • [3] W. K. H. Panofsky and M. Phillips, Classical electricity and magnetism, 2nd ed., Addison-Wesley, Reading, Mass., 1962 MR 0135824
  • [4] W. K. H. Panofsky and M. Phillips, Classical electricity and magnetism, 2nd ed., Addison-Wesley, Reading, Mass., 1962, p. 69 MR 0135824
  • [5] K. J. Binns and P. J. Lawrenson, Electric and magnetic field problems, Macmillan, New York, 1963, pp. 194 and 235
  • [6] G. F. Carrier, M. Krook and C. E. Pearson, Functions of a complex variable, McGraw-Hill, New York, 1966 MR 0222256
  • [7] V. I. Smirnov, A course of higher mathematics, Vol. III, Part II: Complex variables. Special functions, GITTL, Moscow, 1951; English transl., Pergamon Press, New York and Addison-Wesley, Reading, Mass., 1964, pp. 97 and 147 MR 0182690
  • [8] L. V. Kantorovič and V. I. Krylov, Approximate methods of higher analysis, Fizmatgiz, Moscow, 1962; English transl., Interscience, New York, 1958, pp. 523-542 MR 0106537
  • [9] P. P. Kufarev, On the method of numerical determination of the parameters in the Schwarz-Christoffel integral, Dokl. Akad. Nauk SSSR 57, 535-537 (1947) (Russian) MR 0022911
  • [10] M. Abramowitz and I. A. Stegun (Editors) 5th printing with corrections, Handbook of mathematical functions with graphs, and mathematical tables, Nat. Bur. Standards Appl. Math. Ser., vol. 55, U. S. Government Printing Office, Washington, D. C., 1966, Eq. 15.3.1 MR 0208798
  • [11] I. Stakgold, Boundary value problems of mathematical physics, Vol. II, Macmillan, New York, 1968, pp. 164-165; 170 (cf. pp. 272-273) MR 0243183
  • [12] W. B. Joyce and S. H. Wemple, Steady-state junction-current distributions in thin resistive films on semiconductor junctions (solutions of $ {\nabla ^2}\upsilon = \pm {e^\upsilon }$), J. Appl. Phys. 41, 3818-3830 (1970)
  • [13] Further discussions of asymptotic solutions near corners appear in: J. A. Lewis and E. Wasserstrom, The field singularity at the edge of an electrode on a semiconductor surface, Bell System Tech. J. 49, 1183-94 (1970); S. R. Lehman, Developments at an analytic corner of solutions of elliptic partial differential equations, J. Math. Mech. 8, 727-760 (1959); W. R. Wasow, Asymptotic development of the solution of Dirichlet's problem at analytic corners, Duke Math. J. 24, 47-56 (1957).

Additional Information

DOI: https://doi.org/10.1090/qam/99785
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society