On the structure of dissipative waves in two and three dimensions

Authors:
Lorne Halabisky and Lawrence Sirovich

Journal:
Quart. Appl. Math. **29** (1971), 135-149

MSC:
Primary 76.35

DOI:
https://doi.org/10.1090/qam/286361

MathSciNet review:
286361

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of two- and three-dimensional small disturbances in a dissipative gas is considered. Explicit forms in terms of known functions are obtained for the time-asymptotic theory in each case. Although the far field solutions may be nonlinear in one dimension, they are always self-consistently linear for two and three dimensions.

**[1]**M. Abramowitz and I. A. Stegun (editors),*Handbook of mathematical functions, with formulas, graphs and mathematical tables*, Nat. Bur. Standards Appl. Math. Series, 55, U.S. Government Printing Office, Washington, D.C., 1964**[2]**I. M. Gel'fand and G. E. Silov,*General functions*. Vol. I:*Properties and operations*, Fizmatgiz, Moscow, 1958; English transl., Academic Press, New York, 1964 MR**0166596****[3]**I. S. Gradstein, and I. M. Ryžik,*Tables of integrals, series and products*, Fizmatgiz, Moscow, 1963; English transl., Academic Press, New York, 1965.**[4]**W. D. Hayes,*Gasdynamic discontinuities*, Princeton Aeronautical Paperbacks, Princeton, N. J., 1960**[5]**M. J. Lighthill,*Viscosity effects in sound waves of finite amplitude*, Surveys in Mechanics, Cambridge Univ. Press, Cambridge, 1956, pp. 250-351 MR**0077346****[6]**J. P. Moran and S. F. Shen,*On the formation of weak plane shock waves by impulsive motion of a piston*, J. Fluid Mech.**25**, 705-718 (1966)**[7]**O. S. Ryžov,*Influence of viscosity and thermal conductivity on propagation of sound impulses*, Prikl. Mat. Meh.**30**, 296-302 (1966) = J. Appl. Math. Mech.**30**, 362-369 (1966) MR**0216810****[8]**L. Sirovich,*Initial and boundary value problems in dissipative gas dynamics*, Phys. Fluids**10**, 24-34 (1967) MR**0208910****[9]**L. Sirovich,*The asymptotic evaluation of multidimensional integrals*, J. Math. Phys.**11**, 1365-1374 (1970) MR**0271604****[10]**C. H. Su and G. S. Gardner,*Derivation of the Korteweg de Vries equation and Burgers equation*, J. Math. Phys.**10**, 536-539 (1969)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76.35

Retrieve articles in all journals with MSC: 76.35

Additional Information

DOI:
https://doi.org/10.1090/qam/286361

Article copyright:
© Copyright 1971
American Mathematical Society