Further observations on a problem of constant surface heating of a variable-conductivity halfspace

Author:
Leonard Y. Cooper

Journal:
Quart. Appl. Math. **29** (1971), 375-389

DOI:
https://doi.org/10.1090/qam/99756

MathSciNet review:
QAM99756

Full-text PDF

Abstract | References | Additional Information

Abstract: A solution to the problem of constant surface heating of an initially constant-temperature, , halfspace where the material in question has a temperature-dependent thermal conductivity is obtained. The thermal conductivity, , is specifically given by . The solution is valid for both heating and cooling of the material where and are arbitrary in magnitude, and can be either positive or negative in sign.

**[1]**L. Y. Cooper,*Constant heating of a variable conductivity halfspace*, Quart. Appl. Math.**27**, 173-184 (1969)**[2]**D. Meksyn,*New methods in laminar boundary layer theory*, Pergamon Press, London, 1961**[3]**Henry Görtler,*A new series for the calculation of steady laminar boundary layer flows*, J. Math. Mech.**6**(1957), 1–66. MR**0084317****[4]**Henry Görtler,*On the calculation of steady laminar boundary layer flows with continuous suction*, J. Math. Mech.**6**(1957), 323–340. MR**0086547****[5]**E. Kamke,*Differentialgleichungen lösungsmethoden und lösungen*, Chelsea, New York, 1959.**[6]**A. Erdélyi et al.,*Higher transcendental functions*. Vol. II, McGraw-Hill, New York, 1953**[7]**J. Barkley Rosser,*Transformations to speed the convergence of series*, J. Research Nat. Bur. Standards**46**(1951), 56–64. MR**0040800****[8]**I. S. Gradštein and I. M. Ryžik,*Tables of integrals, series and products*, Academic Press, New York, 1951

Additional Information

DOI:
https://doi.org/10.1090/qam/99756

Article copyright:
© Copyright 1971
American Mathematical Society