TEMPERATURE OF A NONLINEARLY RADIATING SEMI-INFINITE SOLID*

By JOSEPH B. KELLER (New York University, University Heights, and Courant Institute)

AND

W. E. OLMSTEAD (Northwestern University)

1. Introduction. Let $T(x, t)$ be the temperature of a semi-infinite heat-conducting solid occupying the half-space $x \geq 0$. We suppose that its surface radiates energy at a rate proportional to $[T(0, r)]^n$ and that the surface is heated by a source at a rate proportional to a given function $f(t)$. Here n is a positive constant, the value $n = 1$ corresponding to Newton's law of cooling and $n = 4$ to Stefan's radiation law. If $T = 0$ initially, then for $t > 0$, T is determined by the following initial boundary value problem:

$$T_t(x, t) = T_{xx}(x, t), \quad x > 0, \quad t > 0, \quad (1.1)$$
$$T_x(0, t) = \alpha T(0, t) - f(t), \quad t > 0, \quad (1.2)$$
$$T(x, 0) = 0, \quad x > 0, \quad (1.3)$$
$$T \to 0 \text{ as } x \to \infty, \quad t \geq 0. \quad (1.4)$$

Here $\alpha > 0$ is a given constant.

This problem has been considered by Mann and Wolf [1], Roberts and Mann [2] and Padmavally [3], while Friedman [4] has considered more general problems of a similar kind. From their work we can conclude that if $f(t)$ is a piecewise continuous bounded function then the above problem has a solution and it is unique. In addition Padmavally [3] has shown that if $f(t)$ is nondecreasing in the interval $0 < t < \tau$ then $T(0, t)$ is also nondecreasing in this interval.

Our aim is to obtain more detailed information about the surface temperature $T(0, t)$ when $f(t) > 0$ and $f(t)$ is integrable. First we shall obtain a sequence of upper and lower bounds on $T(x, t)$, which incidentally provide a constructive proof of its existence, and we shall also show its uniqueness. Then we shall show that as $t \to \infty$, $T(0, t) \sim \pi^{1/2} E(\infty)t^{-1/2}$ where $E(\infty)$ is the net energy flux into the solid through the surface. Furthermore, we shall show that $E(\infty) > 0$ for $n \geq 3$ while $E(\infty) = 0$ for $n \leq 2$. Thus for $n \geq 3$ some of the energy which enters the solid remains there, while for $n \leq 2$ it is all ultimately radiated away. We shall also examine the behavior of $T(0, t)$ for small values of t as well as for large and small values of α.

2. Equivalent integral equation. A solution $T(x, t)$ of (1.1)--(1.4) can be represented in terms of $T(0, t)$ by the formula

$$T(x, t) = \int_0^t f(s)G_s(x, t, s) \, ds$$

* Received March 7, 1971. The research reported in this paper was supported by the Army Research Office, Durham, under Contract No. DA-31-124-ARO-D-361.
This formula is obtained by applying Green's theorem to $T(x, t)$ and the Green's function G_ρ defined by the following linear problem:

$$G_\rho = G_\rho(x, t, s), \quad x > 0, \quad t > s > 0,$$ \hfill (2.2)

$$G_\rho(0, t, s) = \rho(t)G_\rho(0, t, s) - \delta(t - s), \quad t \geq s, \quad (2.3)$$

$$G_\rho(x, t, s) = 0, \quad t < s, \quad x \geq 0, \quad (2.4)$$

$$G_\rho(x, t, s) \to 0 \text{ as } x \to \infty, \quad t \geq s. \quad (2.5)$$

The nonnegative function $\rho(t)$ in (2.3) is arbitrary, and can be chosen to facilitate the analysis. Any solution $T(x, t)$ of (2.1) satisfies (1.1)—(1.4).

We now set $x = 0$ in (2.1) to obtain a nonlinear integral equation for $T(0, t)$:

$$T(0, t) = \int_0^t \rho(s)G_\rho(0, t, s) \, ds + \int_0^t \rho(s)G_\rho(x, t, s) \, ds, \quad t \geq 0. \quad (2.6)$$

Once $T(0, t)$ is found from (2.6), it can be used in (2.1) to yield a solution $T(x, t)$ of (1.1)—(1.4). Thus the problem is reduced to solving (2.6).

Let us denote by $u_0(x, t)$ the first term on the right side of (2.1), i.e.

$$u_0(x, t) = \int_0^t \rho(s)G_\rho(x, t, s) \, ds. \quad (2.7)$$

It is evident that u_0 is the solution of the linear problem (2.2)—(2.5) with $\delta(t - s)$ replaced by $\rho(t)$. Now (2.6) can be written in the form

$$T(0, t) = u_0(0, t) + \int_0^t \rho(s)G_\rho(x, t, s) \, ds. \quad (2.8)$$

When $\rho(t) = 0$, (2.6) and (2.8) become the following simple-looking equation:

$$T(0, t) = \pi^{-1/2} \int_0^t \rho(s)G_\rho(0, t, s)\, ds. \quad (2.9)$$

3. **Bounds on** $T(x, t)$. Let us define the sequences of functions u_j and ρ_j as follows:

$$u_j(x, t) = u_{j-1}(x, t), \quad j = 1, 2, \cdots, \quad (3.1)$$

$$\rho_0(t) = 0, \quad \rho_j(t) = \alpha[u_{j-1}(0, t)]^{n-1}, \quad j = 1, 2, \cdots. \quad (3.2)$$

By the maximum principle, $G_\rho \geq 0$ and then from (2.7) and the assumption that $f \geq 0$ we have $u_j \geq 0$. Now for any two functions $\rho(t)$ and $\bar{\rho}(t)$, the functions u_0 and u_1 given by (2.7) are related by the integral equation

$$u_1(x, t) = u_0(x, t) + \int_0^t [\rho(s) - \bar{\rho}(s)]u_0(0, s)G_\rho(x, t, s) \, ds. \quad (3.2)$$

From (3.2) it follows first that $u_1 \leq u_0$, and then that $u_1 \leq u_2 \leq u_0$. By induction we
0 \leq u_1 \leq u_3 \leq \cdots \leq u_{2i-1} \leq \cdots \leq u_2 \leq u_0, \quad x \geq 0, \quad t \geq 0. \quad (3.3)

The functions \(u_{2i-1} \) form a monotone increasing sequence bounded above by \(u_0 \), while the \(u_{2i} \) form a monotone decreasing sequence bounded below by zero. Thus both sequences converge to limits, \(u^0 \) and \(u^* \), defined by

\[
\lim_{i \to \infty} u_{2i-1} = u^0, \quad \lim_{i \to \infty} u_{2i} = u^*. \quad (3.4)
\]

By using (3.2) in a suitable way, we can show that \(u^* = u^0 = u(x, t) \), say, and that \(u(0, t) \) is the unique solution of (2.9). Furthermore, \(u(x, t) \) is the unique solution of (1.1)–(1.4). (See Appendix A for details.) Thus the sequence \(u_i(0, t) \) converges to the unique solution \(T(0, t) \) of (2.9), providing a constructive proof of its existence, as was shown by Mann and Wolf [1] for a different sequence. From (3.4) and (3.3) it follows that the \(u_{2i-1} \) form an increasing sequence of lower bounds on \(T(x, t) \) while the \(u_{2i} \) form a decreasing sequence of upper bounds:

\[
0 \leq u_1 \leq u_3 \leq \cdots \leq u_{2i-1} \leq \cdots \leq T \leq \cdots \leq u_2 \leq u_0, \quad x \geq 0, \quad t \geq 0, \quad (3.5)
\]

In particular, (3.5) yields \(T(x, t) \geq 0 \).

Another interesting lower bound on \(T(0, t) \) can be obtained by choosing \(\rho(t) = \rho^*(t) \) in (2.3) where

\[
\rho^*(t) = \alpha Mt^{-1}, \quad t > 0, \quad M > 0. \quad (3.6)
\]

In Appendix B we show that as \(t \to \infty \),

\[
u_*(0, t) \sim C_0 t^{-1/2}, \quad C^* > 0. \quad (3.7)
\]

We now use \(\rho^* \) and \(u_\rho \) in (2.8) to obtain

\[
T(0, t) = u_\rho(0, t) + \alpha \int_0^t \left(M s^{-1} - [T(0, s)]^{-1} \right) T(0, s) G_\rho(0, t, s) ds, \quad t \geq 0. \quad (3.8)
\]

Now \(T(0, t) \) is positive, bounded, and decays at least as fast as \(t^{-1/2} \) as \(t \to \infty \), as we see from (3.5) and (4.8). Therefore it is possible to choose \(M \) so large that \(Mt^{-1} - [T(0, t)]^{-1} \geq 0 \) for all \(t > 0 \) provided that \(n \geq 3 \). Then it follows from (3.8) and (3.7) that

\[
T(0, t) \geq u_\rho(0, t) \sim C_0 t^{-1/2}, \quad C^* > 0, \quad n \geq 3. \quad (3.9)
\]

We now assume that \(0 \leq f(t) \leq C \) where \(C > 0 \). Then we define \(\mu \) and \(K \) by

\[
\mu = \alpha n K^{n-1}, \quad K = (C/\alpha)^{1/n}. \quad (3.10)
\]

Upon setting \(\rho = \mu \) in (2.8), we obtain

\[
T(0, t) = u_\mu(0, t) + \alpha(n - 1) K^n \int_0^t G_\mu(0, t, s) ds \quad (3.11)
\]

\[\]
\begin{align*}
T(0, t) & \leq u_\star(0, t) + \alpha(n - 1)K^n \int_0^t G_\star(0, t, s) \, ds \\
& \leq [C + \alpha(n - 1)K^n] \int_0^t G_\star(0, t, s) \, ds, \quad n \geq 1. \quad (3.12)
\end{align*}

In Appendix C we show that the integral in (3.12) is bounded above by \(\mu^{-1} \), so (3.12) becomes

\begin{align*}
T(0, t) & \leq K = (C/\alpha)^{1/n}, \quad n \geq 1. \quad (3.13)
\end{align*}

To obtain another lower bound we define \(\gamma \) by

\begin{align*}
\gamma = \frac{\alpha}{C^{1/n}} = \frac{\alpha}{nC^{1/2}}. \quad (3.14)
\end{align*}

Then we set \(\rho = \gamma \) in (2.8) and then use (3.13) to obtain

\begin{align*}
T(0, t) = u_\gamma(0, t) \\
+ \alpha \int_0^t \{ K^{n-1} - [T(0, s)]^{n-1} \} T(0, s) G_\gamma(0, t, s) \, ds \geq u_\gamma(0, t), \quad n \geq 1. \quad (3.15)
\end{align*}

The lower bound \(u_\gamma \) in (3.15) is given by (2.7). For any constant \(\gamma > 0 \), \(G_\gamma \) is given by

\begin{align*}
G_\gamma(0, t, s) = \pi^{-1} (t - s)^{-1/2} \int_0^\infty \frac{\xi^{1/2} e^{-\xi}}{\xi + \gamma^2 (t - s)} \, d\xi, \quad t > s, \quad \gamma \geq 0. \quad (3.16)
\end{align*}

We now use (3.16) in (2.7) and evaluate \(u_\gamma \) for \(t \) large. Then (3.15) yields

\begin{align*}
T(0, t) \geq u_\gamma(0, t) \sim C_\gamma t^{-3/2}, \quad C_\gamma > 0, \quad n \geq 1. \quad (3.17)
\end{align*}

4. Behavior of \(T(0, t) \) for \(t \to \infty \). By integrating (1.1) with respect to \(x \) from 0 to \(\infty \) and with respect to \(t \) from 0 to \(t \) and using (1.2)--(1.4), we obtain

\begin{align*}
\int_0^t \{ f(s) - \alpha T^n(0, s) \} \, ds = \int_0^\infty T(x, t) \, dx. \quad (4.1)
\end{align*}

The left side of (4.1) is \(E(t) \), the net energy flow into the solid up to time \(t \), while the right side is the energy in the solid at time \(t \). We have shown above that if \(f \geq 0 \) then \(T(x, t) \geq 0 \), and thus the right side of (4.1) is nonnegative. Therefore (4.1) yields

\begin{align*}
E(t) = \int_0^t \{ f(s) - \alpha T^n(0, s) \} \, ds \geq 0 \quad \text{if} \quad f \geq 0. \quad (4.2)
\end{align*}

From (4.2) we obtain

\begin{align*}
\int_0^\infty T^n(0, s) \, ds < \infty \quad \text{if} \quad \int_0^\infty f(s) \, ds < \infty. \quad (4.3)
\end{align*}

We can now determine the behavior of \(T(0, t) \) for \(t \to \infty \) by utilizing (4.3) to evaluate the integral in (2.9) asymptotically. We see at once that

\begin{align*}
T(0, t) \sim \pi^{-1/2} \int_0^\infty \{ f(s) - \alpha T^n(0, s) \} \, ds t^{-1/2} \sim \pi^{-1/2} E(\infty) t^{-1/2}. \quad (4.4)
\end{align*}

Upon using (4.4) in (3.9) we obtain

\begin{align*}
E(\infty) \geq \pi^{1/2} C^* > 0, \quad n \geq 3. \quad (4.5)
\end{align*}
By using (4.4) in (4.3), we see that when $E(\infty) > 0$ the integral of T^n is finite only if $n > 2$. It follows that

$$E(\infty) = 0, \quad n \leq 2. \quad (4.6)$$

Thus (4.4) shows only that $T(0, t) = o(t^{-1/2})$ for $n \leq 2$. On the other hand, (3.17) shows that $T(0, t)$ does not decrease faster than $t^{-3/2}$ for $n \geq 1$.

When $n = 1$ the explicit solution of (2.8) is

$$T(0, t) = u_\alpha(0, t) \sim C_\alpha t^{-3/2}, \quad C_\alpha > 0, \quad n = 1, \quad \alpha > 0. \quad (4.7)$$

Thus for $n = 1$, $T(0, t)$ decays at the fastest rate permitted by (3.17). However if $\alpha = 0$, which we have hitherto excluded, then (2.9) shows that $T(0, t)$ is independent of n and is given by

$$T(0, t) = u_0(0, t) \sim C_0 t^{-1/2}, \quad C_0 > 0, \quad \alpha = 0. \quad (4.8)$$

Comparison of (4.4) with (4.8) shows that for $n > 2$, $T(0, t)$ decays at the same slow rate $O(t^{-1/2})$ as if the boundary were not radiating. To understand this we write the radiation rate αT^n as $\alpha'(t)T$ with the effective radiation constant $\alpha'(t) = \alpha T^{n-1}$. Now for $n > 1$, $\alpha'(t)$ tends to zero as $t \to \infty$, so the boundary tends to behave as a nonradiating boundary ($\alpha = 0$) as $t \to \infty$. Evidently for $1 < n < 2$, $\alpha'(t)$ does not tend to zero fast enough to make $T(0, t)$ decay as slowly as $t^{-1/2}$, but for $n > 2$ it does.

5. Perturbation expansions. To find $T(0, t)$ for small values of α, we use (2.9) and solve it by iterations. For α small we can write the results as

$$T(0, t) = u_0(0, t) - \alpha \pi^{-1/2} \int_0^t \frac{u_0(0, s)}{(t-s)^{1/2}} ds$$

$$+ \frac{n \alpha^2 - 1}{\pi} \int_0^t \frac{u_0^{-3/2}(0, s)}{(t-s)^{1/2}} \int_0^s \frac{u_0(0, r)}{(s-r)^{1/2}} dr ds + O(\alpha^2). \quad (5.1)$$

For t small, we require $f(t)$ to be such that $u_0(0, t)$ has the expansion

$$u_0(0, t) = at^h + bt^g + O(t^h), \quad t \to 0, \quad g > h. \quad (5.2)$$

Then the iterative solution of (2.9) yields

$$T(0, t) = at^h + bt^g + O(t^h) - a \pi^{-1/2} \sum_{k=0}^n \frac{t^{k+1/2}}{t^{k+1/2}} \left[1 + O(t^{-h}) \right]$$

$$+ \alpha^2 \pi^{-1} a^{-1} I_n I_{2n-1} t^{(2n-1)h+1/2} \left[1 + O(t^{-h}) \right], \quad t \to 0. \quad (5.3)$$

Here we have introduced I_α, defined by

$$I_\alpha = \int_0^1 \frac{s^\alpha}{(1-s)^{1/2}} ds. \quad (5.4)$$

To find $T(0, t)$ for α large, we first use the Abel inversion formula to solve (2.9) for T^n in the form

$$T^\alpha(0, t) = \frac{t(t)}{\alpha} \frac{1}{\alpha \pi^{1/2}} \frac{d}{dt} \int_0^t (t-s)^{1/2} T(0, s) ds. \quad (5.5)$$
Then we iterate (5.5) to obtain

\[T(0, t) = \alpha^{-1/n} [f(t)]^{1/n} \]

\[\quad - \alpha^{-2/n} n^{-1/2} [f(t)]^{1/n-1} \frac{d}{dt} \int_0^t [f(s)]^{1/n} (t - s)^{-1/2} ds + O(\alpha^{-3/n}), \quad t > 0. \] (5.6)

The result (5.6) cannot be valid at \(t = 0 \) because \(f(0) \) may not be zero, whereas \(T(0, 0) \) must be zero. It is not valid for \(t \) large if \(f(t) \) decays too fast. Thus an initial layer expansion is required at and near \(t = 0 \), and another expansion may be needed for large \(t \), but we shall not determine it.

Appendix A. Existence and uniqueness. To show that \(u' \equiv u^0 \), we consider (3.2) with \(\rho(t) = \alpha[u_2(0, t)]^{-1} \) and \(\varphi(t) = \alpha[u_{2-1}(0, t)]^{-1} \). Then taking limits as \(j \rightarrow \infty \) yields the equation

\[u'(x, t) - u^0(x, t) = \int_0^t [w'(0, s) - u^0(0, s)] \varphi(x, t, s) ds, \quad t \geq 0, \quad x \geq 0, \] (A.1)

where

\[\varphi(x, t, s) = \frac{[u'(0, s)]^{-1} - [u^0(0, s)]^{-1}}{u'(0, s) - u^0(0, s)} u'(0, s) G_x(x, t, s) \geq 0. \] (A.2)

By setting \(x = 0 \) in (A.1) we obtain

\[u'(0, t) - u^0(0, t) = \int_0^t [u'(0, s) - u^0(0, s)] \varphi(0, t, s) ds, \quad t \geq 0. \] (A.3)

This can be viewed as a homogeneous integral equation of the second kind for \(u'(0, t) - u^0(0, t) \) with \(\varphi(0, t, s) \) as the kernel. If we choose a \(t \) such that \(|u'(0, s) - u^0(0, s)| \leq |u'(0, t) - u^0(0, t)| \) \(\) for \(0 \leq s \leq t \), then (A.3) yields

\[|u'(0, t) - u^0(0, t)| \leq |u'(0, t) - u^0(0, t)| \int_0^t \varphi(0, t, s) ds. \] (A.4)

For \(t \) sufficiently small, say \(0 \leq t \leq \varepsilon \), the integral in (A.4) is less than unity, which implies that \(u'(0, t) = u^0(0, t) \) for \(t \leq \varepsilon \). Using this fact in (A.3), we can show that \(u'(0, t) = u^0(0, t) \) in a larger interval. This procedure can be repeated to show that \(u'(0, t) = u^0(0, t) \) for all \(t \geq 0 \). Then (A.1) shows that \(u'(x, t) = u^0(x, t) \) for all \(x \geq 0, t \geq 0 \). Thus there is a common limit \(u(x, t) \), so

\[u(x, t) = u'(x, t) = u^0(x, t), \quad x \geq 0, \quad t \geq 0. \] (A.5)

It follows from the definition (3.1) of \(u_i \) and from (3.2) that \(u \) and \(u_{i-1} \) satisfy

\[u_i(x, t) = u_x(x, t) + \int_0^t \{ \rho(s) - \alpha[u_{i-1}(0, s)]^{-1} \} u_i(0, s) G_x(x, t, s) ds. \] (A.6)

Then since \(u_i \rightarrow u \) and \(u_{i-1} \rightarrow u \), it is clear from (A.6) that \(u \) satisfies (2.1).

To show that the nonnegative solution constructed above is unique, we assume that there are two solutions \(T_1 \) and \(T_2 \). By subtracting (2.9) for \(T_2 \) from (2.9) for \(T_1 \), we obtain
Now by the same arguments used above to show that \(u'(0, t) = u^0(0, t) \), it follows that \(T_1(0, t) = T_2(0, t) \). Then from (2.1) it follows that \(T_1(x, t) = T_2(x, t) \).

Appendix B. Asymptotic behavior of \(u_\mu(0, t) \). For establish the asymptotic property (3.7) for \(u_\mu(0, t) \), we consider the initial boundary value problem (2.2)-(2.5) for \(u_\mu \) with \(\rho(t) = \rho^*(t) = \alpha M t^{-1} \) and with \(\delta(t - s) \) replaced by \(f(t) \). Applying the Laplace transform to this problem yields

\[
\hat{u}_{\mu}(x, p) + p \hat{u}_{\mu}(x, p) = 0, \quad x > 0, \quad (B.1)
\]

\[
\hat{u}_{\mu}(0, p) = \alpha M \int_0^\infty e^{-pt} u_{\mu}(0, t) \, dt - f(p), \quad (B.2)
\]

\[
\hat{u}_{\mu}(x, p) \to 0, \quad x \to \infty. \quad (B.3)
\]

Here \(\hat{u}_{\mu}(x, p) \) and \(f(p) \) are defined by

\[
\hat{u}_{\mu}(x, p) = \int_0^\infty e^{-pt} u_{\mu}(x, t) \, dt, \quad f(p) = \int_0^\infty e^{-pt} f(t) \, dt. \quad (B.4)
\]

The solution of (B.1) satisfying (B.3) is

\[
\hat{u}_{\mu}(x, p) = A(p)e^{-p^{1/2}x}. \quad (B.5)
\]

Here \(A(p) = \hat{u}_{\mu}(0, p) \) must be determined from the boundary condition (B.2). Upon substitution of (B.5) into (B.2) we obtain

\[
-p^{1/2}A(p) = \alpha M \int_0^\infty e^{-pt} u_{\mu}(0, t) \, dt - f(p). \quad (B.6)
\]

Differentiation of (B.6) with respect to \(p \) yields

\[
-\frac{d}{dp} [p^{1/2}A(p)] = -\alpha M A(p) - \frac{d}{dp} f(p). \quad (B.7)
\]

The solution of (B.7) which satisfies (B.6) is

\[
A(p) = -p^{-1/2} \exp \left[2\alpha M p^{1/2} \right] \int_p^\infty \exp \left[-2\alpha M \xi^{1/2} \right] \xi \, d\xi. \quad (B.8)
\]

As \(p \to 0 \), (B.8) implies that

\[
A(p) \sim p^{-1/2} \int_0^\infty \exp \left[-2\alpha M \xi^{1/2} \right] \int_0^\infty t f(t)e^{-t\xi} \, dt \, d\xi \quad \text{as} \quad p \to 0. \quad (B.9)
\]

Then a classical asymptotic result on Laplace transforms shows that

\[
u_{\mu}(0, t) \sim C t^{-1/2} \quad \text{as} \quad t \to \infty, \quad C > 0. \quad (B.10)
\]

Appendix C. Estimation of an integral. To estimate the integral in (3.12) we consider (2.2)-(2.5) with \(\rho(t) = \mu = \text{constant} \). Upon integrating the differential equa-
tion (2.2) we obtain
\[\int_0^{t^*} \int_0^\infty G_{\mu,t}(x, t, s) \, ds \, dx = \int_0^{t^*} \int_0^\infty G_{\mu,t}(x, t, s) \, ds \, dx = -\int_0^{t^*} G_{\mu,t}(0, t, s) \, ds \quad \text{(C.1)} \]
By virtue of the boundary condition (2.3) we then have
\[\int_0^{t^*} \int_0^\infty G_{\mu,t}(x, t, s) \, ds \, dx = 1 - \mu \int_0^t G_{\mu,t}(0, t, s) \, ds. \quad \text{(C.2)} \]
Since \(G_{\mu}(x, t, s) \) depends on the difference \(t - s \), \(G_{\mu,t} = -G_{\mu,s} \) and (C.2) becomes
\[0 \leq \int_0^\infty G_{\mu}(x, t, 0) \, dx = 1 - \mu \int_0^t G_{\mu}(0, t, s) \, ds, \quad t > 0. \quad \text{(C.3)} \]
This gives the desired inequality
\[\int_0^t G_{\mu}(0, t, s) \, ds \leq \mu^{-1}. \quad \text{(C.4)} \]

References