Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



On the computation of the Cauchy index

Author: Brian D. O. Anderson
Journal: Quart. Appl. Math. 29 (1972), 577-582
MSC: Primary 93B25
DOI: https://doi.org/10.1090/qam/403746
MathSciNet review: 403746
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Cauchy index of a real rational function can be computed by evaluating the signature of a certain Hankel matrix. Alternative procedures for its computation are presented here, one of which offers greater computational simplicity.

References [Enhancements On Off] (What's this?)

  • [1] F. R. Gantmacher, Matrizenrechnung. II. Spezielle Fragen und Anwendungen, Hochschulbücher für Mathematik, Bd. 37, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959 (German). MR 0107647
    F. R. Gantmacher, Applications of the theory of matrices, Translated by J. L. Brenner, with the assistance of D. W. Bushaw and S. Evanusa, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959. MR 0107648
    F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959. MR 0107649
  • [2] L. A. Zadeh and C. A. Desoer, Linear system theory, McGraw-Hill, New York, 1963
  • [3] C. Hermite, Sur le nombre des racines d'une équation algébrique comprise entre des limites données, J. Reine Angew. Math. 52, 39-51, (1854) and Oeuvres 1, pp. 397-414
  • [4] P. C. Parks, A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov, Proc. Cambridge Philos. Soc. 58 (1962), 694–702. MR 0144032
  • [5] B. D. O. Anderson, Application of the second method of Lyapunov to the proof of the Markov stability criterion, Internat. J. Control. 5, 473-482 (1967)
  • [6] R. E. Kalman, On the Hermite-Fujiwara theorem in stability theory, Quart. Appl. Math. 23 (1965), 279–282. MR 0190299, https://doi.org/10.1090/S0033-569X-1965-0190299-2
  • [7] A. S. Householder, Bezoutiants, elimination and localization, SIAM Rev. 12 (1970), 73–78. MR 0272181, https://doi.org/10.1137/1012003
  • [8] W. Jarominek, Investigating linear systems of automatic control by means of determinant stability margin indices, Proc. First IFAC Congress 1, 76-84, Butterworths, London, 1961
  • [9] Vlasislav Jarominek, The equivalence of the Routh-Hurwitz and the Markov stability criteria, Soviet Physics Dokl. 5 (1960), 78–82. MR 0139808

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 93B25

Retrieve articles in all journals with MSC: 93B25

Additional Information

DOI: https://doi.org/10.1090/qam/403746
Article copyright: © Copyright 1972 American Mathematical Society

Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website