Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Mathematical applications, computation, and complexity

Author: Hirsh Cohen
Journal: Quart. Appl. Math. 30 (1972), 109-121
DOI: https://doi.org/10.1090/qam/99736
MathSciNet review: QAM99736
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Theodore von Kármán, The engineer grapples with non-linear problems, Bull. Amer. Math. Soc. 46 (1940), 615–683. MR 0003131, https://doi.org/10.1090/S0002-9904-1940-07266-0
  • [2] T. von Karman, Tooling up mathematics for engineering, Quart. Appl. Math. 1, 1 (1943)
  • [3] The mathematical sciences: A collection of essays, Edited by the National Research Council’s Committee on Support of Research in the Mathematical Sciences (COSRIMS) with the collaboration of George A. W. Boehm, The M.I.T. Press, Cambridge, Mass.-London, 1969. MR 0235955
  • [4] A. Weyl, Appendix to C. B. Lévi-Strauss, Les structures élémentaires de la parenté, Presses universitaires de France, Paris, 1949
  • [5] N. Chomsky, Formal properties of grammars, in Handbook of Math. Psych., ed. R. D. Luce, R. R. Bush, and E. Galanter, John Wiley, New York 1963, Vol. 2
  • [6] D. C. Gazis, A computer model for the financial analysis of urban housing projects, Socio-Econ. Plan. Science 5, 125-144 (1971)
  • [7] Hirsh Cohen, Nonlinear diffusion problems, Studies in applied mathematics, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N. J.), 1971, pp. 27–64. MAA Studies in Math., Vol. 7. MR 0447846
  • [8] R. FitzHugh, Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber, Biophys. J. 2, 11-21 (1962)
  • [9] W. L. Hardy, Propagation speed in myelinated nerve: dependence on external sodium, Ph.D. dissertation, University of Washington (1969)
  • [10] R. Stein, The role of spike trains in transmitting and distorting sensory signals, in The neurosciences second study program, ed. F. O. Schmitt, Rockefeller University Press, 1970, pp. 597-604
  • [11] D. Kennedy, Nerve cells and behavior, Amer. Sci. 59, 36-42 (1971)
  • [12] F. Ratliff, Mach Bands, Holden-Day, New York, 1965
  • [13] R. Landauer, Cooperative effects, soft models, and fluctuations in data processing, Ferroelectrics 2, 1 (1971)
  • [14] Donald E. Knuth, Mathematical analysis of algorithms, Information processing 71 (Proc. IFIP Congress, Ljubljana, 1971) North-Holland, Amsterdam, 1972, pp. 19–27. MR 0403310
  • [15] J. F. Traub, Iterative methods for the solution of equations, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0169356
  • [16] Constructive aspects of the fundamental theorem of algebra, Proceedings of a Symposium Conducted at the IBM Research Laboratory, Zürich-Rüschlikon, June 5-7, vol. 1967, Wiley-Interscience A Division of John Wiley & Sons, Ltd., London-New York-Sydney, 1969. MR 0253555
  • [17] R. Landauer, The future evolution of the computer, Physics Today 23, 7, 22 (1970)
  • [18] R. Keyes, Power dissipation in information processing, Science 168, 796-801, (1970)
  • [19] M. Freiser and P. Marcus, A survey of some physical limitations on computer elements, IEEE Trans, on Magnetics MAG-5, 82-90 (1969)
  • [20] A. G. Vituškin, \cyr Otsenka slozhnostn zadachi tabulirovaniya, Sovremennye Problemy Matematiki. Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (Russian). MR 0117486
  • [21] A. N. Kolmogorov, On the representations of continuous functions of several variables in the form of superposition of continuous functions of one variable and addition, Dokl. Akad. Nauk 114, 679-681 (1957) (Russian)
  • [22] S. Winograd, On the time required to perform addition, J. Assoc. Comp. Mach. 12, 277-285 (1965)
  • [23] V. Ya. Pan, Meihods of computing values of polynomials, Uspehi. Mat. Nauk 21, 103-134 (1966) (Russian); English translation in Russian Math. Surveys 21, 105-136 (1966)
  • [24] Shmuel Winograd, On the number of multiplications necessary to compute certain functions, Comm. Pure Appl. Math. 23 (1970), 165–179. MR 0260150, https://doi.org/10.1002/cpa.3160230204
  • [25] Volker Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969), 354–356. MR 0248973, https://doi.org/10.1007/BF02165411
  • [26] S. Winograd and P. Wolfe, On the rate of convergence of local iterative schemes, Theory of machines and computations (Proc. Internat. Sympos., Technion, Haifa, 1971) Academic Press, New York, 1971, pp. 67–70. MR 0455359
  • [27] V. V. Kljuev and N. I. Kokovkin-Ščerbak, On the minimization of the number of arithmetic operations for solving linear algebraic systems of equations, Ž. Vyčisl. Mat. i Mat. Fiz. 5 (1965), 21–33 (Russian). MR 0172453
  • [28] W. D. Frazer and A. C. McKellar, Samplesort: A sampling approach to minimal storage tree sorting, J. Assoc. Comput. Mach. 17 (1970), 496–507. MR 0287744, https://doi.org/10.1145/321592.321600
  • [29] An as-yet unpublished result of M. Blum (Berkeley), R. Floyd (Stanford), R. Tarjens (Cornell), and others.
  • [30] H. Marko, Physikalische und biologische Grenzen der Informationsübermittlung, Kybernetik 2, 274-284 (1965)
  • [31] H. J. Bremermann, Optimization through evolution and recombination, in Self-organizing systems, edited by M. C. Yovits et al., Spartan Books, Washington, D. C., 1962, pp. 93-106
  • [32] W. Ashby, Some consequences of Bremermann's limit for information-processing systems, in Cybernetic problems in bionics, Bionics Symposium, 1966, ed. Hans L. Oestreicher, Gordon and Breach, N. Y., 1968, pp. 69-76

Additional Information

DOI: https://doi.org/10.1090/qam/99736
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society