Diffraction of a plane shear elastic wave by a circular rigid disk and a penny-shaped crack

Authors:
D. L. Jain and R. P. Kanwal

Journal:
Quart. Appl. Math. **30** (1972), 283-297

DOI:
https://doi.org/10.1090/qam/99726

MathSciNet review:
QAM99726

Full-text PDF

References | Additional Information

**[1]**D. L. Jain and R. P. Kanwal,*An integral equation perturbation technique in applied mathematics-II, applications to diffraction theory*, Appl. Anal. (1972)**[2]**D. L. Jain and R. P. Kanwal,*An integral equation method for solving mixed boundary value problems.*, SIAM J. Appl. Math.**20**(1971), 642–658. MR**0288401**, https://doi.org/10.1137/0120064**[3]**R. A. Westmann,*Asymmetric mixed boundary-value problems of the elastic half-space*, Trans. ASME Ser. E.J. Appl. Mech.**32**(1965), 411–417. MR**0184483****[4]**A. K. Mal,*Dynamic stress intensity factors for a non-axisymmetric loading of the penny-shaped crack*, Int. J. Engng. Sci.**6**, 725-733 (1968)**[5]**Ram P. Kanwal,*Linear integral equations*, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2013. Theory & technique; Reprint of the 2nd (1997) edition [MR1427946]. MR**2986176****[6]**B. Noble,*Integral equation perturbation methods in low-frequency diffraction.*, Electromagnetic waves, Univ. of Wisconsin Press, Madison, Wis., 1962, pp. pp 323–360. MR**0135459****[7]**P. J. Barrat and W. D. Collins,*The scattering cross section of an obstacle in an elastic solid for plane harmonic waves*, Proc. Camb. Phil. Soc.**61**, 969-981 (1965)**[8]**G. N. Bycroft,*Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum*, Philos. Trans. Roy. Soc. London. Ser. A.**248**(1956), 327–368. MR**0086506**, https://doi.org/10.1098/rsta.1956.0001**[9]**H. Liebowitz (editor),*Fracture, an advanced treatise*, Vol. II, Academic Press, New York, 1968, 146.**[10]**I. A. Robertson,*Diffraction of a plane longitudinal wave by a penny-shaped crack*, Proc. Camb. Phil. Soc.**63**, 229-238 (1967)

Additional Information

DOI:
https://doi.org/10.1090/qam/99726

Article copyright:
© Copyright 1972
American Mathematical Society