Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Concentration-dependent diffusion


Author: L. F. Shampine
Journal: Quart. Appl. Math. 30 (1973), 441-452
MSC: Primary 80.35
DOI: https://doi.org/10.1090/qam/413785
MathSciNet review: 413785
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] N. E. Friedmann, Quasilinear heat flow, Trans. ASME 80, 635-645 (1958)
  • [2] J. Crank, The mathematics of diffusion, 2nd ed., Clarendon Press, Oxford, 1975. MR 0359551
  • [3] A. V. Luikov, Analytical heat diffusion theory, trans, ed. J. P. Hartnett, Academic Press, New York, 1968
  • [4] W. F. Ames, Nonlinear partial differential equations in engineering, Academic Press, New York-London, 1965. MR 0210342
  • [5] L. A. Peletier, Asymptotic behaviour of temperature profiles of a class of nonlinear heat conduction problems, Quart. J. Mech. Appl. Math. 23 (1970), 441–447. MR 0276599, https://doi.org/10.1093/qjmam/23.3.441
  • [6] Carl Seyferth, Die Eindeutigkeit von Lösungen der eindimensionalen Diffusionsgleichung mit konzentrationsabhängigem Diffusionskoeffizienten, Math. Nachr. 24 (1962), 13–32 (German). MR 0161045, https://doi.org/10.1002/mana.19620240103
  • [7] J. H. Weiner, Transient heat conduction in multiphase media, British J. Appl. Phys. 6, 361-363 (1955)
  • [8] J. R. Philip, Numerical solution of equations of the diffusion type with diffusivity concentration-dependent, Trans. Faraday Soc. 51 (1955), 885–892. MR 0071876
  • [9] S. Prager, The calculation of diffusion coefficients from sorption data, J. Chem. Phys. 19, 537-541 (1951)
  • [10] J. Crank and M. E. Henry, Diffusion in media with variable properties, Trans. Faraday Soc. 45, 636-650 (1949)
  • [11] M. Nagumo, Ueber die Differentialgleichung $ y'' = f\left( {x,y,y'} \right)$, Proc. Phys. Math. Soc. Japan, Ser. 3, 19, 861-866 (1937)
  • [12] Paul B. Bailey, Lawrence F. Shampine, and Paul E. Waltman, Nonlinear two point boundary value problems, Mathematics in Science and Engineering, Vol. 44, Academic Press, New York-London, 1968. MR 0230967
  • [13] M. N. Ozisik, Boundary value problems of heat conduction, International Textbook Co., Scranton, Pennsylvania, 1968
  • [14] M. R. Hopkins, Heat conduction in a medium having thermal properties depending on the temperature, Proc. Phys. Soc. 50, 703-706 (1938)
  • [15] R. E. Kidder, Unsteady flow of gas through a semi-infinite porous medium, J. Appl. Mech. 24 (1957), 329–332. MR 0092536
  • [16] T. Andre-Talamon, Sur la diffusion non-linéaire de la chaleur, Int. J. Heat Mass Transfer 11, 1351-1357 (1968)
  • [17] J. L. Hwang, On the calculation of diffusion coefficients from sorption data, J. Chem. Phys. 20, 1320-1323 (1952)
  • [18] M. Culter and G. T. Cheney, Heat wave method for the measurement of thermal diffusivity, J. Appl. Phys. 34, 1902-1909 (1963)
  • [19] T. J. Dekker, Finding a zero by means of successive linear interpolation, Constructive Aspects of the Fundamental Theorem of Algebra (Proc. Sympos., Zürich-Rüschlikon, 1967) Wiley-Interscience, New York, 1969, pp. 37–48. MR 0256551

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 80.35

Retrieve articles in all journals with MSC: 80.35


Additional Information

DOI: https://doi.org/10.1090/qam/413785
Article copyright: © Copyright 1973 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website