Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Approximate solutions to some static and dynamic optimal structural design problems


Author: Raymond H. Plaut
Journal: Quart. Appl. Math. 30 (1973), 535-539
DOI: https://doi.org/10.1090/qam/99713
MathSciNet review: QAM99713
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] C. Y. Sheu and W. Prager, Minimum-weight design with piecewise constant specific stiffness, J. Optim. Theory Appl. 2 (1968), no. 3, 179–186. MR 1551285, https://doi.org/10.1007/BF00926999
  • [2] R. T. Shield and W. Prager, Optimal structural design for given deflection, Zeit. angewandte Math. Phys. 21, 513-523 (1970)
  • [3] L. J. Icerman, Optimal structural design for given dynamic deflection, Int. J. Solids Struct. 5, 473-490 (1969)
  • [4] Z. Mróz, Optimal design of elastic structures subjected to dynamic, harmonically-varying loads, Zeit. angewandte Math. Mech. 50, 303-309 (1970)
  • [5] R. H. Plaut, Optimal structural design for given deflection under periodic loading, Quart. Appl. Math. 29, 315-318 (1971)
  • [6] R. M. Brach, Minimum dynamic response for a class of simply supported beam shapes, Int. J. Mech. Sci. 10, 429-439 (1968)
  • [7] R. H. Plaut, On minimizing the response of structures to dynamic loading, Zeit. angewandte Math. Phys. 21, 1004-1010 (1970)
  • [8] Frithiof I. Niordson, On the optimal design of a vibrating beam, Quart. Appl. Math. 23 (1965), 47–53. MR 0175392, https://doi.org/10.1090/S0033-569X-1965-0175392-8
  • [9] M. J. Turner, Design of minimum mass structures with specified natural frequencies, AIAA J. 5, 406-412 (1967)
  • [10] W. Prager and J. E. Taylor, Problems of optimal structural design, J. Appl. Mech. 35, 102-106, (1968)
  • [11] R. M. Brach, On the extremal fundamental frequencies of vibrating beams, Int. J. Solids Struct. 4, 667-674 (1968)
  • [12] C. Y. Sheu, Elastic minimum-weight design for specified fundamental frequency, Int. J. Solids Struct. 4, 953-958 (1968)
  • [13] T. A. Weisshaar, An application of control theory methods to the optimization of structures having dynamic or aeroelastic constraints, SUDAAR No. 412, Oct. 1970, Department of Aeronautics and Astronautics, Stanford University
  • [14] Joseph B. Keller, The shape of the strongest column, Arch. Rational Mech. Anal. 5 (1960), 275–285 (1960). MR 0128160, https://doi.org/10.1007/BF00252909
  • [15] I. Tadjbakhsh and J. B. Keller, Strongest columns and isoperimetric inequalities for eigenvalues, Trans. ASME Ser. E. J. Appl. Mech. 29 (1962), 159–164. MR 0137381
  • [16] J. E. Taylor, The strongest column: an energy approach, J. Appl. Mech. 34, 486 (1967)
  • [17] M. Zyczkowski and A. Gajewski, Optimal structural design in non-conservative problems of elastic stability, in Proceedings of the IUTAM Symposium on Instability of Continuous Systems (H. Leipholz, ed.), Springer-Verlag, Berlin, 1971, pp. 295-301
  • [18] Mark Levinson, Application of the Galerkin and Ritz methods to nonconservative problems of elastic stability, Z. Angew. Math. Phys. 17 (1966), 431–442 (English, with German summary). MR 0204000, https://doi.org/10.1007/BF01594536


Additional Information

DOI: https://doi.org/10.1090/qam/99713
Article copyright: © Copyright 1973 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website