Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The compressional modulus of a material permeated by a random distribution of circular cracks


Authors: H. D. Garbin and L. Knopoff
Journal: Quart. Appl. Math. 30 (1973), 453-464
DOI: https://doi.org/10.1090/qam/99719
MathSciNet review: QAM99719
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] T. T. Wu, The effect of inclusion shape on the elastic moduli of a two-phase material, Int. J. Solids Structures 2, 1-8 (1966)
  • [2] J. B. Walsh, Attenuation in partially melted material, J. Geophys. Res. 73, 2209-2216 (1968)
  • [3] J. B. Walsh, New analysis of attenuation in partially melted rock, J. Geophys. Res. 74, 4333-4337 (1969)
  • [4] A. K. Mal and L. Knopoff, Elastic wave velocities in two-component systems, J. Inst. Maths. Applies. 3, 376-387 (1967)
  • [5] D. D. Ang and L. Knopoff, Diffraction of vector elastic waves by a clamped finite strip, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 201–207. MR 0168193
  • [6] D. D. Ang and L. Knopoff, Diffraction of vector elastic waves by a finite crack, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1075–1081. MR 0172596
  • [7] A. K. Mal, D. D. Ang and L. Knopoff, Diffraction of elastic waves by a rigid circular disc, Proc. Camb. Phil. Soc. 64, 237-247 (1968)


Additional Information

DOI: https://doi.org/10.1090/qam/99719
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society