Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Dual extremum principles relating to cooling fins


Authors: S. Bhargava and R. J. Duffin
Journal: Quart. Appl. Math. 31 (1973), 27-41
MSC: Primary 80.49
DOI: https://doi.org/10.1090/qam/416294
MathSciNet review: 416294
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Under consideration is a differential equation $ {\left( {pu'} \right)'} = qu$ of the Sturm--Liouville type where the function $ q\left( x \right) > 0$ is given. The problem is to find a function $ p\left( x \right) > 0$ in $ 0 \le x < b$, a constant $ b$ and a solution $ u\left( x \right)$ of the corresponding differential equation such that the energy functional $ \int_0^b {\left[ {p{{\left( {u'} \right)}^2} + q{u^2}} \right]} dx$ is maximized when $ p\left( x \right)$ is subject to the constraint $ \int_0^b {{p^\rho }dx \le {K^\rho }} $ and $ u$ is subject to the boundary conditions $ u = 1$ at $ x = 0$ and $ p\left( {du/dx} \right) = 0$ at $ x = b$. Here $ K > 0$ and $ \rho \ge 1$ are constants. A key relation $ \left\vert {du/dx} \right\vert = \lambda {p^{\left( {\rho - 1} \right)/2}}$, where $ \lambda $ is a positive constant, is found. This criterion leads to explicit solution of the problem. A further consequence of this criterion together with a pair of dual extremum principles is a ``duality inequality'' giving sharp upper and lower estimates of the maximum value of the energy functional.


References [Enhancements On Off] (What's this?)

  • [1] R. J. Duffin, A variational problem relating to cooling fins, Jour. Math, and Mech. 8, 47-56 (1959) MR 0103711
  • [2] R. J. Duffin and D. K. McLain, Optimum shape of a cooling fin on a convex cylinder, Jour. Math. and Mech. 17, 769-784 (1968)
  • [3] R. J. Duffin, Duality inequalities of mathematics and science, in Nonlinear programming, edited by J. B. Rosen, O. L. Mangasarian, and K. Ritter, Academic Press Inc., New York, 401-423, (1970) MR 0272399
  • [4] R. J. Duffin, Network models, in Proceedings of the Symposium on Mathematical Aspects of Electrical Network Theory, SIAM-AMS Proceedings 3, 65-91 (1969) MR 0335173
  • [5] E. Schmidt, Die Wärmeübertragung durch Rippen, Zeit. d. ver. deutch Ing. 70, 885-890 (1926)
  • [6] J. E. Wilkins, Jr., Minimum mass thin fins for space radiators, in Proc. Heat Transfer and Fluid Mech. Inst., Stanford University Press, 1960, 229-243
  • [7] J. E. Wilkins, Jr., Minimum mass thin fins and constant temperature gradients, J. Soc. Ind. Appl. Math. 10, 62-73 (1962)
  • [8] C. Y. Liu, A variational problem with applications to cooling fins, J. Soc. Ind. Appl. Math. 10, 19-29 (1962) MR 0137486
  • [9] C. Y. Liu, A variational problem relating to cooling fins with heat generation, Quart. Appl. Math. 19, 245-251 (1962) MR 0135850
  • [10] F. C. Appl and II. M. Hung, A principle for convergent upper and lower bounds, Int. J. Mech. Sci. 6, 381-389 (1964)
  • [11] R. Focke, Die Nadel als Kühlelement, Forschung auf dem Gebiete des Ingenieurwesens 13, 34-42 (1942)
  • [12] N. I. Akhiezer, The calculus of variations (translated from the Russian), Blaisdell Pub. Co., New York (1962), 106-107 MR 0142019
  • [13] S. Bhargava and R. J. Duffin, Network models for maximization of heat transfer under weight constraints, Networks 2, 285-299 (1972) MR 0323452
  • [14] S. Bhargava and R. J. Duffin, Dual extremum principles relating to optimum beam design, Arch. Rat. Mech. Anal. (1973), to appear MR 0334652

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 80.49

Retrieve articles in all journals with MSC: 80.49


Additional Information

DOI: https://doi.org/10.1090/qam/416294
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society