Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Triangular, nine-degrees-of-freedom, $ C^0$ plate bending element of quadratic accuracy


Authors: Isaac Fried and Shok Keng Yang
Journal: Quart. Appl. Math. 31 (1973), 303-312
DOI: https://doi.org/10.1090/qam/99699
MathSciNet review: QAM99699
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. W. Clough and J. L. Tocher, Finite element stiffness matrices for analysis of plate bending, in Proceedings of the conference on matrix methods in structural mechanics, Wright-Patterson Air Force Base, TR-66-80 (1966)
  • [2] Garrett Birkhoff and Henry L. Garabedian, Smooth surface interpolation, J. Math. and Phys. 39 (1960), 258–268. MR 0119387
  • [3] G. P. Bazeley, Y. K. Cheung, B. M. Irons and O. C. Zienkiewicz, Triangular elements in plate bending--conforming and nonconforming solutions, in Proceedings of the conference on matrix methods in structural mechanics, Wright-Patterson Air Force Base, TR-66-80 (1966)
  • [4] R. T. Severn and P. R. Taylor, The finite element method for flexure of slabs when stress distributions are assumed, Proc. Inst. Civ. Engnrs. 34, 153-167 (1966)
  • [5] R. Dungar, R. T. Severn and P. R. Taylor, Vibration of plate and shell structure using triangular finite elements, J. Strain Anal. 2, 73-83 (1967)
  • [6] D. J. Allman, Triangular finite elements for plate bending with constant and linearly varying bending moments, in Colloquium of the IUTAM on high-speed computing of elastic structures, University of Liege, Belgium (1970)
  • [7] W. Prager, Variational principles for elastic plates with relaxed continuity requirements, Int. J. Solids Structures 4, 837-844 (1968)
  • [8] T. H. H. Pian, Derivation of element stiffness matrices by assumed stress distribution, AIAA J. 2, 1333-1336 (1964)
  • [9] J. A. Stricklin, W. E. Haisler, P. R. Tisdale and R. Gunderson, A rapidly converging triangular plate element, AIAA J. 7, 180-181 (1969)
  • [10] G. A. Wempner, J. T. Oden and D. K. Kross, Finite element analysis of thin shells, J. Engineering Mech. Div. ASCE 94, 1273-1294 (1968)
  • [11] I. Fried, Shear in $ {C^0}$ and $ {C^1}$ plate bending elements, Int. J. Solids Structures 9, 449-460 (1973)
  • [12] R. P. Nordgren, A bound on the error in plate theory, Quart. Appl. Math. 28 (1971), 587–595. MR 0280051, https://doi.org/10.1090/S0033-569X-1971-0280051-4
  • [13] I. Fried, Discretization and round-off error in the finite element analysis of elliptic boundary value and eigenvalue problems, Ph.D. thesis, Massachusetts Institute of Technology (June 1971)
  • [14] I. Fried, Condition of finite element matrices generated from nonuniform meshes, AIAA J. 10, 219--221 (1972)
  • [15] I. Fried, Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number, J. Sound Vibration 22, 407-418 (1972)
  • [16] I. Fried, The $ {l_2}$ and $ {l_\infty }$ condition numbers of the finite element stiffness and mass matrices and the pointwise convergence of the method, Conference on the Mathematics of Finite Elements and Applications, Brunel University, April 18-20, Academic Press, ed. J. R. Whiteman (1972)


Additional Information

DOI: https://doi.org/10.1090/qam/99699
Article copyright: © Copyright 1973 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website