Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



On lower bounds of the natural frequencies of inhomogeneous plates

Author: V. Komkov
Journal: Quart. Appl. Math. 31 (1974), 395-401
MSC: Primary 35J40
DOI: https://doi.org/10.1090/qam/425349
MathSciNet review: 425349
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] N. Aronszajn, The Raleigh-Ritz method and A. Weinstein method for approximation of eigenvalues, I, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 474-480
  • [2] -, II, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 594-601
  • [3] -, Approximation methods for eigenvalues of completely continuous symmetric operators, in Proc. Symp. Spectral Theory and Differential Problems, Oklahoma State Univ., Stillwater, Okla., 1951
  • [4] Norman W. Bazley and David W. Fox, Truncations in the method of intermediate problems for lower bounds to eigenvalues, J. Res. Nat. Bur. Standards Sect. B 65B (1961), 105–111. MR 0142897
  • [5] -, Methods for lower bounds to frequencies of continuous elastic systems, John Hopkins Univ. Applied Physics Lab. Report TG 609, 1964
  • [6] Norman W. Bazley, Lower bounds for eigenvalues, J. Math. Mech. 10 (1961), 289–307. MR 0128612
  • [7] J. B. Diaz, Upper and lower bounds for eigenvalues, Inst. for Fluid Dynamics and Appl, Math., Univ. of Maryland, College Park, Md., 1956. MR 0093907
  • [8] Gaetano Fichera, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Mathematics, vol. 8, Springer-Verlag, Berlin-New York, 1965. MR 0209639
  • [9] -, Lezioni sulle transformazioni lineari, Inst. Math. Univ. Trieste, 1954.
  • [10] S. H. Gould, Variational methods for eigenvalue problems. An introduction to the methods of Rayleigh, Ritz, Weinstein, and Aronszajn, Mathematical Expositions No. 10, University of Toronto Press, Toronto, 1957. MR 0087019
  • [11] Tosio Kato, Quadratic forms in Hilbert spaces and asymptotic perturbation series, Department of Mathematics, University of California, Berkeley, Calif., 1955. MR 0073958
  • [12] L. E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rational Mech. Anal. 4 (1955), 517–529. MR 0070834
  • [13] A. Weinstein, Sur la stabilité des plaques encastrées, Compt. Rend. 200 (1935), 107-109
  • [14] Alexander Weinstein, The intermediate problems and the maximum-minimum theory of eigenvalues, J. Math. Mech. 12 (1963), 235–245. MR 0155083
  • [15] Alexander Weinstein, Some applications of the new maximum-minimum theory of eigenvalues, J. Math. Anal. Appl. 12 (1965), 58–64. MR 0182800, https://doi.org/10.1016/0022-247X(65)90053-3
  • [16] A. Weinstein, A necessary and sufficient condition in the maximum-minimum theory of eigenvalues, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 429–434. MR 0149657
  • [17] Alexander Weinstein, Bounds for eigenvalues and the method of intermediate problems, Partial differential equations and continuum mechanics, Univ. of Wisconsin Press, Madison, Wis., 1961, pp. 39–53. MR 0126068
  • [18] L. È. Èl′sgol′c, Calculus of variations, Pergamon Press Ltd., London-Paris-Frankfurt, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962. MR 0133032
  • [19] S. T. Kuroda, Finite-dimensional perturbation and a representaion of scattering operator, Pacific J. Math. 13 (1963), 1305–1318. MR 0156210

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35J40

Retrieve articles in all journals with MSC: 35J40

Additional Information

DOI: https://doi.org/10.1090/qam/425349
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society