Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Finite-element method: accuracy at a point


Author: Isaac Fried
Journal: Quart. Appl. Math. 32 (1974), 149-161
MSC: Primary 65N30
DOI: https://doi.org/10.1090/qam/436623
MathSciNet review: 436623
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] G. Strang, Approximation in the finite element method, Numer. Math. 19, 81-98 (1972) MR 0305547
  • [2] J. Nitsche, Ein Kriterium fur die Quasi-Optimalitat des Ritschen Verfahrens, Numer. Math. 11, 346-348 (1968) MR 0233502
  • [3] J. B. Diaz and H. J. Greenberg, Upper and lower bounds for the solution of the first boundary value problem of elasticity, Quart. Appl. Math. 6, 326-331 (1948) MR 0026529
  • [4] J. B. Diaz and H. J. Greenberg, Upper and lower bounds for the solution of the first biharmonic boundary value problem, J. Math. Phys. 27, 193-201 (1948) MR 0026862
  • [5] H. Fujita, Contribution to the theory of upper and lower bounds in boundary value problems, J. Phys. Soc. Japan 10, 1-8 (1955) MR 0070256
  • [6] C. G. Maple, The Dirichlet problem: bounds at a point for the solution and its derivatives, Quart. Appl. Math. 8, 213-228 (1950) MR 0040499
  • [7] K. Washizu, Bounds for solutions of boundary value problems in elasticity, J. Math. Phys. 32, 117-128 (1953) MR 0058415
  • [8] J. L. Synge, The hypercircle in mathematical physics, Cambridge University Press, 1957 MR 0097605
  • [9] L. V. Kantorovich and V. I. Krylov, Approximate methods of higher analysis, Interscience Publishers, 1958 MR 0106537
  • [10] M. H. Shultz, Multivariate spline functions and, elliptic problems, in Approximations with special emphasis on spline functions, Academic Press, 1969 MR 0257560
  • [11] J. Nitsche, Linearer Spline-Functionen und die Methoden von Ritz fur elliptische Randwertprobleme, Arch. Rat. Mech. Anal. 36, 348-355 (1970) MR 0255043
  • [12] S. G. Mikhlin, Variational methods in mathematical physics, Pergamon Press, Oxford, 1964 MR 0172493
  • [13] M. Zlamal, On the finite element method, Numer. Math. 12, 394-409 (1968) MR 0243753
  • [14] M. W. Johnson, Jr. and R. W. McLay, Convergence of the finite element method in the theory of elasticity, J. Appl. Mech. 35, 274-278 (1968)
  • [15] E. Hill, G. Szegö and J. D. Tomarkin, On some generalizations of a theorem by A. Markoff, Duke Math. J. 3, 729-739 (1937)
  • [16] I. Fried and Shok Keng Yang, Best finite elements distribution around a singularity, AIAA J. 10, 1244-1246 (1972)
  • [17] G. Strang, The finite element method and approximation theory, in Numerical solution of partial differential equations II, ed. B. Hubbard, 1971 MR 0287723
  • [18] F. V. Filho, Comment on 'Computation of stress resultants from element stiffness matrices', AIAA J. 6, 571-572 (1968)
  • [19] B. L. Hulme, Interpolation by Ritz approximation, J. Math. Mech. 18, 337-341 (1968) MR 0231537
  • [20] J. H. Bramble and L. E. Payne, Pointwise bounds in the first biharmonic boundary value problem, J. Math. Phys. 42, 278-286 (1963) MR 0159135

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: https://doi.org/10.1090/qam/436623
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society