Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The drag and sphericity index of a spindle


Authors: D. M. Stasiw, F. B. Cook, M. C. Detraglia and L. C. Cerny
Journal: Quart. Appl. Math. 32 (1974), 351-354
DOI: https://doi.org/10.1090/qam/99675
MathSciNet review: QAM99675
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. E. Payne and W. E. Pell, The Stokes flow problem for a class of axially symmetric bodies, J. Fluid Mech. 7, 529-549 (1960) MR 0115471
  • [2] L. E. Payne, On axially symmetric flow and the method of generalized electrostatics, Quart. Appl. Math. 10, 197-204 (1952) MR 0051060
  • [3] W. E. Pell and L. E. Payne, The Stokes flow about a spindle, Quart. Appl. Math. 18, 257-262 (1960) MR 0120967
  • [4] E. W. Hobson, The theory of spherical and ellipsoidal harmonics, University Press, Cambridge, 1965, p. 451
  • [5] C. Neumann, Uber die Mehler'schen Kugelfunktionen und deren Anwendung auf electroslatische Probleme, Math. Ann. 18, 195-236 (1881)
  • [6] M. I. Zhurina and L. N. Karmazina, Tables and formulae for the spherical functions $ {P_{ - 1/2 + i{\tau ^m}}}(Z)$, Pergamon Press, New York, (1966) MR 0203097
  • [7] M. I. Zhurina and L. N. Karmazina, Tables of the Legendre functions $ {P_{ - 1/2 + i\tau }}(X)$, Part I, Macmillan, New York, 1964 MR 0204728
  • [8] A. Erdelyi, Higher transcendental functions, Vol. 1, McGraw-Hill, New York, 1953, p. 174
  • [9] P. B. Canham and A. C. Burton, Distribution of size and shape in populations of normal human red cells, Cir. Res. 22, 405-422 (1968)
  • [10] M. Gluckman, S. Weinbaum and R. Pfeffer, Axisymmetric slow viscous flow past an arbitrary convex body of revolution, J. Fluid. Mech. 55, 677-709 (1972)


Additional Information

DOI: https://doi.org/10.1090/qam/99675
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society