Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Generalized plane deformations of ideal fiber-reinforced materials


Author: A. C. Pipkin
Journal: Quart. Appl. Math. 32 (1974), 253-263
DOI: https://doi.org/10.1090/qam/99681
MathSciNet review: QAM99681
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. J. M. Spencer, Deformations of fibre-reinforced materials, Oxford University Press, London, 1972
  • [2] A. C. Pipkin and T. G. Rogers, Plane deformations of incompressible fiber-reinforced materials, J. Appl. Mech. 38, 634 (1971)
  • [3] T. G. Rogers and A. C. Pipkin, Small deflections of fiber-reinforced beams or slabs, J. Appl. Mech. 38, 1047 (1971)
  • [4] A. C. Pipkin and T. G. Rogers, A mixed boundary value problem for fiber-reinforced materials, Quart. Appl. Math. 29, 151 (1971)
  • [5] T. G. Rogers and A. C. Pipkin, Finite lateral compression of a fiber-reinforced tube, QJMAM 24, 311 (1971)
  • [6] G. C. Everstine and T. G. Rogers, A theory of maching of fiber-reinforced materials, J. Comp. Mat. 5, 94 (1971)
  • [7] B. C. Kao and A. C. Pipkin, Finite buckling of fiber-reinforced columns, Acta Mechanica 13, 265 (1972)
  • [8] A. H. England, The stress boundary value problem for an ideal fibre-reinforced material, JIMA 9, 310 (1972).
  • [9] A. H. England and T. G. Rogers, Plane crack problems for ideal fibre-reinforced materials, QJMAM 26, 303 (1973)
  • [10] A. C. Pipkin and V. M. Sanchez, Existence of solutions of plane traction problems for ideal composites, SIAM J. Appl. Math. 26 (1974), 213–220. MR 0349109, https://doi.org/10.1137/0126018
  • [11] G. C. Everstine and A. C. Pipkin, Stress channelling in transversely isotropic elastic composites, ZAMP 22, 825 (1971)
  • [12] G. C. Everstine and A. C. Pipkin, Boundary layers in fiber-reinforced materials, J. Appl. Mech. 40, 518 (1973)
  • [13] A. C. Pipkin, Finite deformations of ideal fiber-reinforced composites, in Micromechanics, G. P. Sendeckyi, ed., Academic Press, New York, 1973
  • [14] William Prager and Philip G. Hodge Jr., Theory of perfectly plastic solids, Dover Publications, Inc., New York, 1968. MR 0239795


Additional Information

DOI: https://doi.org/10.1090/qam/99681
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society