Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Passivity and linear system stability


Author: Y. V. Venkatesh
Journal: Quart. Appl. Math. 34 (1976), 19-27
MSC: Primary 93D05
DOI: https://doi.org/10.1090/qam/687250
MathSciNet review: 687250
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using the network concept of passivity (or positive realness), new criteria for stability and instability of linear systems (with time-varying coefficients) are derived.


References [Enhancements On Off] (What's this?)

  • [1] E. F. Infante, (a) Stability criteria for nth order homogeneous linear differential equations, in Differential equations and dynamical systems (ed. J. P. LaSalle), Academic Press, New York, 1967, pp. 309-321; (b) On the stability of some linear nonautonomous systems, J. Appl. Mech. 35, 7-12 (1968) MR 0218686
  • [2] Y. V. Ventakesh, Global variation criteria for the stability of linear time varying systems, SIAM J. Control 9, 431-440 (1971) MR 0299291
  • [3] R. W. Brockett, Optimisation theory and the converse of the Circle Criterion, Proc. 1965 NEC, pp. 697-701
  • [4] C. Corduneanu, The application of differential inequalities to the theory of stability, An. Sti. Uni. Al. I. Cuza Iasi Sect. I (N.S.) 6, 47-58 (1960) MR 0125301
  • [5] T. A. Bickart, Periodically time varying system: an instability criterion, Proc. IEEE 55, no. 12, 2057 (1967) MR 0264177
  • [6] R. A. Skoog and C. C. G. Lau, Instability of slowly varying systems, IEEE Trans. Automatic Control AC-17, 86-92 (1972) MR 0335972
  • [7] B. D. O. Anderson, A system theory criterion for positive real matrices, SIAM J. Control 5, 171-182 (1967) MR 0213168
  • [8] J. R. Dickerson, Stability of systems with parametric excitation, J. Appl. Mech. 37, 228-230 (1970) MR 0274876
  • [9] E. F. Infante and R. Plaut, Stability of a column subjected to a time dependent axial load, AIAA J. 7, 766-768 (1969)
  • [10] J. F. Potter, Matrix quadratic solutions, SIAM J. Appl. Math. 14, 496-501 (1966) MR 0201457

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 93D05

Retrieve articles in all journals with MSC: 93D05


Additional Information

DOI: https://doi.org/10.1090/qam/687250
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society