SOBOLEV-TYPE LOWER BOUNDS ON $||\nabla \psi||^2$ FOR ARBITRARY REGIONS IN TWO-DIMENSIONAL EUCLIDEAN SPACE

By GERALD ROSEN (Drexel University)

Abstract. This note reports the derivation of lower bounds of the Sobolev type on $||\nabla \psi||^2 = \int_R (\frac{\partial \psi}{\partial x_1})^2 + (\frac{\partial \psi}{\partial x_2})^2) dx_1 dx_2$ for generic real scalar $\psi = \psi(x_1, x_2)$ of function class C^0 piecewise C^2 which vanish over the boundary of the (bounded or unbounded) region R in Euclidean 2-space.

1. Introduction. It has been shown [1] that for all continuous real scalar functions $\phi = \phi(x_1, x_2, x_3)$ with piecewise continuous second-derivatives we have the Sobolev inequality

$$\int |\nabla \phi|^2 d^3x \geq \frac{3}{2}\left[\int \phi^6 d^3x \right]^{1/3}$$

satisfied if ϕ is such that the integral on the right side of (1) is finite. The proof of (1) was given in [1] for unbounded Euclidean 3-space, but it is obvious that this Sobolev inequality is also valid if the domain of definition for ϕ and for the 3-dimensional integrations in (1) is any prescribed (bounded or unbounded) region, provided that ϕ is required to vanish over the boundary of the region. It is shown in the present note that useful lower bounds of the Sobolev type can also be established on

$$||\nabla \psi||^2 = \int_R (\frac{\partial \psi}{\partial x_1})^2 + (\frac{\partial \psi}{\partial x_2})^2) dx_1 dx_2$$

for generic real scalar $\psi = \psi(x_1, x_2)$ of function class C^0 piecewise C^2 which vanish over the boundary of the (bounded or unbounded) region R in Euclidean 2-space.

2. Primary result. Let us consider an unbounded cylindrical region in 3-space that intersects the $x_1 - x_2$ plane in the 2-dimensional region R and has a boundary surface generator parallel to the x_3 - axis. Then for $\phi = \psi \exp (-\lambda |x_3|)$ with $\psi = \psi(x_1, x_2)$ and λ a disposable positive constant, we have $\phi = 0$ on the boundary of the cylindrical region if $\psi = 0$ on the boundary of R. If we introduce the notation

$$N^{(\nu)} = \int_R |\psi|^{\nu} d^2x, \quad \nu = 1, 2, 3, \cdots$$

the Sobolev inequality (1) applies to $\phi = \psi \exp (-\lambda |x_3|)$ through the unbounded cylindrical region and yields

$$\lambda^{-1} ||\nabla \psi||^2 + \lambda N^{(2)} \geq 3\left[\int \phi^6 d^3x \right]^{1/3}$$

* Received September 28, 1974. This work was supported in part by N.A.S.A. grant NSG 3090.

1 To prove this, one simply makes an extension of the domain of definition of ϕ to all 3-space with $\phi = 0$ outside the region and applies the original result for unbounded Euclidean 3-space.
or equivalently

\[\lambda^{-2/3} ||\nabla \psi||^2 + \lambda^{4/3} N^{(2)} \geq \left(\frac{\sqrt{3} \pi}{2} \right)^{4/3} [N^{(4)}]^{1/3}. \]

The left side of (5) is minimized by putting \(\lambda = ||\nabla \psi||/[2N^{(2)}]^{1/2} \), and thus we obtain \(^2\)

\[||\nabla \psi||^2 \geq \frac{\pi^2}{2 \sqrt{3}} [N^{(4)}/N^{(2)}]^{1/2} \]

for \(\psi = \psi(x_1, x_2) \) with the specified properties.

It is of interest to compare the primary Sobolev-type lower bound on \(||\nabla \psi||^2 \) given by (6) with the linear-theoretic result for a bounded region \(R \) of finite area \(A = \int_R d^2x \), namely

\[||\nabla \psi||^2 \geq \frac{\pi \alpha_0^2}{A} N^{(2)} \]

where \(\alpha_0 = .7655\pi \) is the first zero of the zero-order Bessel function, \(J_0(\alpha_0) = 0 \). Because the smallest ground-state eigenvalue is obtained for fixed area \(A \) if \(R \) is a circle of radius \((A/\pi)^{1/2} \), the numerical coefficient on the right side of (7) follows from the Helmholtz equation eigenvalue problem associated with \(\min_R \{ ||\nabla \psi||^2/N^{(2)} \} \) for \(\psi = \psi(x_1, x_2) \) of function class \(C^0 \) piecewise \(C^2 \) in \(R \) and zero on the boundary of \(R \) (see, for example [2]). Our Sobolev-type result (6) is sharper than (7) for \(\psi \) and \(A \) such that \([N^{(6)}]^{1/2} > (2\sqrt{3} \alpha_0^2/\pi A)[N^{(2)}]^{3/2} \); moreover, (6) applies for unbounded \(R \) (i.e., \(A = \infty \)) if \(\psi \) is such that the three integrals in (6) exist as finite quantities.

3. Alternative lower bound. Excluding from consideration a trivial \(\psi \) which vanishes identically in \(R \), the functional

\[\Phi[\psi] = N^{(1)} [N^{(2)}]^{-1} ||\nabla \psi|| \]

is stationary about solutions to the inhomogeneous Helmholtz equation

\[\nabla^2 \psi + k^2 \psi = [N^{(1)}]^{-1} ||\nabla \psi||^2 \text{ sgn} (\psi) \]

where the positive quantity \(k^2 = 2[N^{(2)}]^{-1} ||\nabla \psi||^2 \). In terms of the variable

\[(\psi - \frac{1}{2} [N^{(1)}]^{-1} N^{(2)} \text{ sgn} (\psi)), \]

Eq. (9) reduces \textit{presque partout} to the homogeneous Helmholtz equation, and thus the established linear theory for proper vibrations of membranes [2] provides the solution to \(\min_R \{ \min_{\Phi[\psi]} \} \) for bounded regions \(R \) of fixed area \(A \). The minimum value of (8) obtains for \(\psi \) of function class \(C^0 \) piecewise \(C^2 \) in \(R \) and zero on the boundary with \(R \) a circle of radius \(r_A = (A/\pi)^{1/2} \) and \(\psi \) proportional to the nonnegative (nodeless) function

\[\psi = J_0(kr) - J_0(\alpha_1) \approx J_0(kr) + (.4026) \]

\[\psi = \psi(x_1, x_2) \]

\(^1\) The somewhat sharper numerical coefficient \(\pi^{3/2}/2^{1/3}3^{1/4} \approx 2.849 \) in place of \(\pi^{3/2}/2^{1/3}3^{1/4} \approx 2.849 \) in (6) if one puts \(\phi = \psi e^{-3/4x^2} \) in place of the form \(\phi = \psi e^{-3/4x^2} \) used here. One is tempted to conjecture that \(\min_{\Phi[\psi]} \{ ||\nabla \psi||^2 \} [N^{(6)}/N^{(2)^{1/2}}] \) equals either 3 or \(\pi \), but the author has not been able to solve the associated nonlinear eigenvalue problem which yields the maximum value for the numerical coefficient in (6).

\(^3\) Along the nodal lines \(\psi = 0 \) the quantity \(\nabla^2 \text{ sgn} (\psi) \) is not defined, and continuity of the solution must be evoked.
in which \(kr_A = \alpha_1 = 1.2197\pi \) is the first positive zero of the first-order Bessel function, \(J_1(\alpha_1) = 0 \). By making use of the definite integrals (for example, \([3]\int_0^1 J_0(\alpha_1 x) x \, dx = 0 \) and \(\int_0^1 J_0(\alpha_1 x)^2 x \, dx = \int_0^1 J_1(\alpha_1 x)^2 x \, dx = \frac{1}{2} J_2(\alpha_1)^2 = \frac{1}{2} J_0(\alpha_1)^2 \)), one obtains the quantities associated with (10)

\[
N^{(1)}(\phi) = \pi r_A^2 |J_0(\alpha_1)|, \quad N^{(2)}(\phi) = 2\pi r_A^2 [J_0(\alpha_1)]^2,
\]

verifies that (10) satisfies (9) with \(k = \alpha_1/r_A \), and evaluates \(\Phi(\phi) = \frac{1}{2} \sqrt{\pi \alpha_1} \). Hence, from (8) and \(\Phi(\phi) \geq \Phi(\phi) \) we get the alternative Sobolev-type lower bound

\[
||\nabla \psi||^2 \geq \frac{\pi}{4} \alpha_1^2 [N^{(2)} / N^{(1)}]^2.
\]

Since the area of the region does not appear on the right side of (12), this result also applies for unbounded \(R \) if \(\psi \) is such that the three integrals in (12) exist as finite quantities. The equality sign in (12) holds only for a circle of finite radius and \(\psi \) proportional to \(\psi \) given by (10), thus for a \(\psi \) which also has its normal derivative equal to zero over the boundary: \((d\psi/dr)|_{r=r_A} = 0 \). Finally, it should be observed that (12) is sharper than (6) if \([N^{(6)}]^{1/2} < (\sqrt{3} \alpha_1^2 / 2\pi) [N^{(1)}]^{-2}[N^{(2)}]^{5/2} \sim (4.07)[N^{(1)}]^{-2}[N^{(2)}]^{5/2} \), a circumstance not precluded by the general Hölder inequality for all \(\psi \), \([N^{(6)}]^{1/2} > [N^{(1)}]^{-2}[N^{(2)}]^{5/2} \).

References