An inverse problem for a dissipative hyperbolic equation with discontinuous coefficients

Author:
Robert J. Krueger

Journal:
Quart. Appl. Math. **34** (1976), 129-147

MSC:
Primary 35R30; Secondary 35L10

DOI:
https://doi.org/10.1090/qam/481676

MathSciNet review:
481676

Full-text PDF

References | Similar Articles | Additional Information

**[1]**R. Courant and D. Hilbert,*Methods of mathematical physics. Vol. I*, Interscience Publishers, Inc., New York, N.Y., 1953. MR**0065391****[2]**D. S. Heim and C. B. Sharpe,*The synthesis of nonuniform lines of finite length--part I*, IEEE Trans. Circuit Theory**15**, 394-403 (1967)**[3]**Irvin Kay,*The inverse scattering problem when the reflection coefficient is a rational function*, Comm. Pure Appl. Math.**13**(1960), 371–393. MR**0114540**, https://doi.org/10.1002/cpa.3160130304**[4]**I. Kay,*The inverse scattering problem for transmission lines*(in L. Colin, ed.,*Mathematics of profile inversion*, NASA TM X-62, 150 (1972))**[5]**I. Kay and H. E. Moses,*The determination of the scattering potential from the spectral measure function, III*, Nuovo Cimento**3**, 276-304 (1956)**[6]**I. Kay and H. E. Moses,*The determination of the scattering potential from the spectral measure function. IV. “Pathological” scattering problems in one dimension*, Nuovo Cimento (10)**5**(1957), no. supplemento, 230–242. MR**0093325****[7]**H. E. Moses and C. M. deRidder,*Properties of dielectrics from reflection coefficients in one dimension*, MIT Lincoln Lab. Tech. Rep. 322 (1963)**[8]**C. B. Sharpe,*The synthesis of infinite lines*, Quart. Appl. Math.**21**(1963), 105–120. MR**0153299**, https://doi.org/10.1090/S0033-569X-1963-0153299-3**[9]**V. H. Weston,*On the inverse problem for a hyperbolic dispersive partial differential equation*, J. Mathematical Phys.**13**(1972), 1952–1956. MR**0315994**, https://doi.org/10.1063/1.1665939

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35R30,
35L10

Retrieve articles in all journals with MSC: 35R30, 35L10

Additional Information

DOI:
https://doi.org/10.1090/qam/481676

Article copyright:
© Copyright 1976
American Mathematical Society