Viscous effects on perturbed spherical flows

Author:
Andrea Prosperetti

Journal:
Quart. Appl. Math. **34** (1977), 339-352

DOI:
https://doi.org/10.1090/qam/99652

MathSciNet review:
QAM99652

Full-text PDF

Abstract | References | Additional Information

Abstract: The problem of two viscous, incompressible fluids separated by a nearly spherical free surface is considered in general terms as an initial-value problem to first order in the perturbation of the spherical symmetry. As an example of the applications of the theory, the free oscillations of a viscous liquid drop and of a bubble in a viscous liquid are studied in some detail. It is shown that the oscillations are initially describable in terms of an irrotational approximation, and that the normal-mode results are recovered as . In between these asymptotic regimes, however, the motion is significantly different from either approximation.

**[1]**G. G. Stokes,*On waves*, Cambridge and Dublin Math. J.**4**, 219 (1849), reprinted in*Mathematical and physical papers*, Cambridge University Press, Cambridge, Vol. II, pp. 220-242**[2]**H. Lamb,*Hydrodynamics*, 6th ed., Dover Publications, New York, 1945**[3]**S. Chandrasekhar,*Hydrodynamic and hydromagnetic stability*, The International Series of Monographs on Physics, Clarendon Press, Oxford, 1961. MR**0128226****[4]**Andrea Prosperetti,*Viscous effects on small-amplitude surface waves*, Phys. Fluids**19**(1976), no. 2, 195–203. MR**0413747**, https://doi.org/10.1063/1.861446**[5]**S. Chandrasekhar,*The oscillations of a viscous liquid globe*, Proc. London Math. Soc. (3)**9**(1959), 141–149. MR**0105246**, https://doi.org/10.1112/plms/s3-9.1.141**[6]**W. H. Reid,*The oscillations of a viscous liquid drop*, Quart. Appl. Math.**18**(1960/1961), 86–89. MR**0114449**, https://doi.org/10.1090/S0033-569X-1960-0114449-4**[7]**C. A. Miller and L. E. Scriven,*The oscillations of a fluid droplet immersed in another fluid*, J. Fluid Mech.**32**, 417-435 (1968)**[8]**H. H. K. Tong and C. Y. Wong,*Vibrations of a viscous liquid sphere*, J. Phys.**A7**, 1038-1050 (1974)**[9]**M. S. Plesset,*On the stability of fluid flows with spherical symmetry*, J. Appl. Phys.**25**(1954), 96–98. MR**0059692****[10]**Garrett Birkhoff,*Note on Taylor instability*, Quart. Appl. Math.**12**(1954), 306–309. MR**0065316**, https://doi.org/10.1090/S0033-569X-1954-65316-6**[11]**M. S. Plesset and T. P. Mitchell,*On the stability of the spherical shape of a vapor cavity in a liquid*, Quart. Appl. Math.**13**(1956), 419–430. MR**0079931**, https://doi.org/10.1090/S0033-569X-1956-79931-7**[12]**R. B. Chapman and M. S. Plesset,*Nonlinear effects in the collapse of a nearly spherical cavity in a liquid*, J. Basic Eng.**94**, 142-146 (1972)**[13]**A. Prosperetti,*Viscous and nonlinear effects in the oscillations of drops and bubbles*, Thesis, California Institute of Technology, Pasadena, California, 1974, pp. 127-150**[14]**G. K. Batchelor,*An introduction to fluid mechanics*, Cambridge University Press, Cambridge, 1971**[15]**Lord Rayleigh,*On the pressure developed in a liquid during the collapse of a spherical cavity*, Phil. Mag.**34**, 94-98 (1917)**[16]**L. D. Landau and E. M. Lifshitz,*Fluid mechanics*, Translated from the Russian by J. B. Sykes and W. H. Reid. Course of Theoretical Physics, Vol. 6, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959. MR**0108121****[17]**M. S. Plesset,*Cavitating flows*, in*Topics in ocean engineering*, C. I. Bretschneider, ed., Gulf Publishing Co., Houston, 1969, Vol. 1, pp. 85-95**[18]**D. Y. Hsieh,*Some analytical aspects of bubble dynamics*, J. Basic Eng.**87**, 991-1005 (1965)**[19]**Hugh L. Dryden, Francis D. Murnaghan, and H. Bateman,*Hydrodynamics*, Dover Publications, Inc., New York, 1956. MR**0077307****[20]**John William Strutt Rayleigh Baron,*The Theory of Sound*, Dover Publications, New York, N. Y., 1945. 2d ed. MR**0016009****[21]**Morio Onoe,*Tables of modified quotients of Bessel functions of the first kind for real and imaginary arguments*, Columbia University Press, New York, 1958. MR**0095590****[22]**David Vernon Widder,*The Laplace Transform*, Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, N. J., 1941. MR**0005923****[23]**F. Durbin,*Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method*, Comput. J.**17**(1974), 371–376. MR**0356449**, https://doi.org/10.1093/comjnl/17.4.371

Additional Information

DOI:
https://doi.org/10.1090/qam/99652

Article copyright:
© Copyright 1977
American Mathematical Society