Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Viscoelastic Rayleigh waves

Authors: P. K. Currie, M. A. Hayes and P. M. O'Leary
Journal: Quart. Appl. Math. 35 (1977), 35-53
DOI: https://doi.org/10.1090/qam/99648
MathSciNet review: QAM99648
Full-text PDF

Abstract | References | Additional Information

Abstract: A general analysis is given of the propagation of surface waves over a half-space of homogeneous isotropic linearly-viscoelastic material. Particular emphasis is placed on the properties of the particle paths. The detailed examination of particular models shows that (in contrast with elastic materials) (i) more than one surface wave may be possible; (ii) the waves may be either direct or retrograde at the surface; (iii) the motion may change sense at many or no levels below the surface; (iv) the wave speed may be greater than the body-wave speeds.

References [Enhancements On Off] (What's this?)

  • [1] Lord Rayleigh, On Waves Propagated along the Plane Surface of an Elastic Solid, Proc. Lond. Math. Soc. 17 (1885/86), 4–11. MR 1576302, https://doi.org/10.1112/plms/s1-17.1.4
  • [2] H. Jeffreys, The earth, Cambridge U. P., Cambridge, 1952, p. 34
  • [3] Michael Hayes and Ronald S. Rivlin, A note on the secular equation for Rayleigh waves, Z. Angew. Math. Phys. 13 (1962), 80–83 (English, with German summary). MR 0140216, https://doi.org/10.1007/BF01600759
  • [4] A. N. Stroh, Steady state problems in anisotropic elasticity, J. Math. and Phys. 41 (1962), 77–103. MR 0139306
  • [5] D. M. Barnett and J. Lothe, Consideration of the existence of surface wave (Rayleigh wave) solutions in anisotropic elastic crystals, J. Phys. F: Metal Phys. 4, 671-686 (1974)
  • [6] P. K. Currie, Rayleigh waves on elastic crystals, Quart. J. Mech. Appl. Math. 27, 489-496 (1974)
  • [7] S. C. Hunter, Viscoelastic waves, Progress in solid mechanics, Vol. 1, North-Holland Publishing Co., Amsterdam, 1960, pp. 1–57. MR 0115417
  • [8] F. J. Lockett, The reflection and refraction of waves at an interface between viscoelastic materials, J. Mech. Phys. Solids 10 (1962), 53–64. MR 0137383, https://doi.org/10.1016/0022-5096(62)90028-5
  • [9] M. A. Hayes and R. S. Rivlin, Propagation of sinusoidal small-amplitude waves in a deformed visco-elastic solid. I and II, J. Acoust. Soc. Amer. 46, 610-616 (1969), 51, 1652-1663 (1972)
  • [10] M. A. Hayes and R. S. Rivlin, Longitudinal waves in a linear viscoelastic material, ZAMP 23, 153-156 (1972)
  • [11] M. A. Hayes and R. S. Rivlin, Plane waves in linear viscoelastic materials, Quart. Appl. Math. 32, 113-121 (1974)
  • [12] D. R. Bland, The theory of linear viscoelasticity, International Series of Monographs on Pure and Applied Mathematics, Vol. 10, Pergamon Press, New York-London-Oxford-Paris, 1960. MR 0110314
  • [13] W. Maurice Ewing, Wenceslas S. Jardetzky, and Frank Press, Elastic waves in layered media, Lamont Geological Observatory Contribution No. 189. McGraw-Hill Series in the Geological Sciences, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1957. MR 0094967
  • [14] R. S. Rivlin and J. L. Ericksen, Stress-deformation relations for isotropic materials, J. Rational Mech. Anal. 4 (1955), 323–425. MR 0068413
  • [15] A. E. Green and R. S. Rivlin, The mechanics of non-linear materials with memory, Arch. Rational Mech. Anal. 1 (1957), 1–21. MR 0095628, https://doi.org/10.1007/BF00297992
  • [16] J. W. Archbold, Algebra, Sir Isaac Pitman and Sons, Ltd., London, 1958.
  • [17] H. Kolsky, Stress waves in solids, Dover, New York, 1962, p. 22
  • [18] P. Chadwick and D. W. Windle, Propagation of Rayleigh waves along isothermal and insulated boundaries, Proc. Roy. Soc. Ser. A 280 (1964), 47–71. MR 0165777

Additional Information

DOI: https://doi.org/10.1090/qam/99648
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society