QUARTERLY OF APPLIED MATHEMATICS

The Quarterly prints original papers in applied mathematics which have an intimate connection with applications. It is expected that each paper will be of a high scientific standard; that the presentation will be of such character that the paper can be easily read by those to whom it would be of interest; and that the mathematical argument, judged by the standard of the field of application, will be of an advanced character.

Manuscripts (two copies) submitted for publication in the Quarterly of Applied Mathematics should be sent to the Editorial Office, Box F, Brown University, Providence, R. I. 02912, either directly or through any one of the Editors or Collaborators. In accordance with their general policy, the Editors welcome particularly contributions which will be of interest both to mathematicians and to scientists or engineers. Authors will receive galley proofs only. The authors' institution will be requested to pay a publication charge of $25.00 per page which, if honored, entitles them to 100 free reprints. Instructions will be sent with galley proofs.

The 1976 subscription price for Volume 34 (April 1976-January 1977) is $25.00. Single issues can be purchased, as far as they are available, at $8.00 and back volumes at $25.00 per volume. Subscriptions and orders for back volumes must be addressed to: American Mathematical Society, P.O. Box 1571, Providence, R. I. 02901. All orders must be accompanied by payment. Other subscription correspondence should be addressed to American Mathematical Society, P.O. Box 6248, Providence, R. I. 02940.

Second-class postage paid at Providence, Rhode Island, and at Richmond, Virginia

WILLIAM BYRD PRESS, INC., RICHMOND, VIRGINIA
1. **Title of Publication**

Quarterly of Applied Mathematics

2. **Date of Filing**

October 1, 1976

3. **Frequency of Issue**

Quarterly

4. **Location of Known Office of Publication**

Brown University, Providence, Rhode Island 02912

5. **Location of the Headquarters or General Business Offices of the Publishers**

Brown University, Providence, Rhode Island 02912

6. **Names and Complete Addresses of Publisher, Editor, and Managing Editor**

- **Publisher (Name and Address)**
 Brown University, Providence, Rhode Island 02912
- **Editor (Name and Address)**
 W. F. Freiberger, Department of Applied Mathematics, Brown University, Providence, RI 02912
- **Managing Editor (Name and Address)**
 W. F. Freiberger, Department of Applied Mathematics, Brown University, Providence, RI 02912

7. **Owner** (If owned by a corporation, its name and address must be stated and also immediately thereunder the names and addresses of stockholders owning or holding 1 percent or more of total amount of stock. If not owned by a corporation, the names and addresses of the individual owners must be given. If owned by a partnership or other unincorporated firm, its name and address, as well as that of each individual must be given.)

Brown University

8. **Known Bondholders, Mortgagees, and Other Security Holders Owning or Holding 1 Percent or More of Total Amount of Bonds, Mortgages or Other Securities (If there are none, so state)**

None

9. **For Completion by Nonprofit Organizations Authorized to Mail at Special Rates (Section 132.122, PSM)**

The purpose, function, and nonprofit status of this organization and the exempt status for Federal income tax purposes (Check one)

- I have not changed during preceding 12 months
- I have changed during preceding 12 months (If changed, publisher must submit explanation of change with this statement.)

10. **Extent and Nature of Circulation**

<table>
<thead>
<tr>
<th>Extent and Nature of Circulation</th>
<th>Current Month</th>
<th>Previous Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Total No. Copies Printed (Net Press Run)</td>
<td>2,200</td>
<td>2,200</td>
</tr>
<tr>
<td>B. Paid Circulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Sales through Dealers and Carriers, Street Vendors and Counter Sales</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>2. Mail Subscriptions</td>
<td>1,265</td>
<td>1,291</td>
</tr>
<tr>
<td>C. Total Paid Circulation (Sum of 10B1 and 10B2)</td>
<td>1,415</td>
<td>1,441</td>
</tr>
<tr>
<td>D. Free Distribution by Mail, Carrier or Other Means, Publicity, and Other Free Copies</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>E. Total Distribution (Sum of C and D)</td>
<td>1,459</td>
<td>1,485</td>
</tr>
<tr>
<td>F. Copies Not Distributed</td>
<td>741</td>
<td>715</td>
</tr>
<tr>
<td>1. Office Use, Left Over, Unaccounted, Spoiled After Printing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G. Total (Sum of F, F1 and 2—should equal net press run shown in A)</td>
<td>2,200</td>
<td>2,200</td>
</tr>
</tbody>
</table>

11. I certify that the statements made by me above are correct and complete.

Managing Editor

W. F. Freiberger, Managing Editor

(U.S. POSTAL SERVICE)
SUGGESTIONS CONCERNING THE PREPARATION OF MANUSCRIPTS FOR THE QUARTERLY OF APPLIED MATHEMATICS

The editors will appreciate the authors' cooperation in taking note of the following directions for the preparation of manuscripts. These directions have been drawn up with a view toward eliminating unnecessary correspondence, avoiding the return of papers for changes, and reducing the charges made for "author's corrections."

Manuscripts: Papers should be submitted in original typewriting on one side only of white paper sheets and be double or triple spaced with wide margins. Marginal instructions to the printer should be written in pencil to distinguish them clearly from the body of the text. The papers should be submitted in final form. Only typographical errors may be corrected in proofs; composition charges for all major deviations from the manuscript will be passed on to the author.

Titles: The title should be brief but express adequately the subject of the paper. The name and initials of the author should be written as he prefers; all titles and degrees or honors will be omitted. The name of the organization with which the author is associated should be given in a separate line to follow his name.

Mathematical Work: As far as possible, formulas should be typewritten; Greek letters and other symbols not available on the typewriter should be carefully inserted in ink. Manuscripts containing pencilled material other than marginal instructions to the printer will not be accepted. The difference between capital and lower-case letters should be clearly shown; care should be taken to avoid confusion between zero (0) and the letter O, between the numeral one (1), the letter l and the prime ('), between alpha and a, kappa and k, mu and u, nu and v, eta and n.

Titles of books or papers should be quoted in the original language (with an English translation added in parentheses, if this seems desirable), but only English abbreviations should be used for bibliographical details like ed., vol., no., chap., p.

Square roots should be written with the exponent \(\sqrt{} \) rather than with the sign \(\sqrt{ } \). Complicated exponents and subscripts should be avoided. Any complicated expression that recurs frequently should be represented by a special symbol.

For exponentials with lengthy or complicated exponents the symbol \(\exp \) should be used, particularly if such exponentials appear in the body of the text. Thus,

\[
\exp [(a^2 + b^2)^{\frac{1}{2}}]
\]

is preferable to \(e^{(a^2 + b^2)^{\frac{1}{2}}} \).

Fractions in the body of the text and fractions occurring in the numerators or denominators of fractions should be written with the solidus. Thus,

\[
\frac{\cos (\pi x/2b)}{\cos (\pi a/2b)}
\]

is preferable to

\[
\frac{\cos \frac{\pi x}{2b}}{\cos \frac{\pi a}{2b}}
\]

In many instances the use of negative exponents permits saving of space. Thus,

\[
f u^{-1} \sin u \, du \text{ is preferable to } \int \frac{\sin u}{u} \, du.
\]

Whereas the intended grouping of symbols in handwritten formulas can be made clear by slight variations in spacing, this procedure is not acceptable in printed formulas. To avoid misunderstanding, the order of symbols should therefore be carefully considered. Thus,

\[
(a + bx) \cos t \text{ is preferable to } \cos t(a + bx).
\]

In handwritten formulas the size of parentheses, brackets and braces can vary more widely than in print. Particular attention should therefore be paid to the proper use of parentheses, brackets and braces. Thus,

\[
[(a + b + cx)^n \cos ky)^2] \text{ is preferable to } ((a + (b + cx)^n) \cos ky)^2.
\]

Cuts: Drawings should be made with black India ink on white paper or tracing cloth. It is recommended to submit drawings of at least double the desired size of the cut. The width of the lines of such drawings and the size of the lettering must allow for the necessary reduction. Drawings which are unsuitable for reproduction will be returned to the author for redrawing. Legends accompanying the drawings should be written on a separate sheet.

Bibliography: References should be grouped together in a Bibliography at the end of the manuscript. References to the Bibliography should be made by numerals between square brackets.

The following examples show the desired arrangements: (for books—S. Timoshenko, Strength of materials, vol. 2, Macmillan and Co., London, 1931, p. 237; for periodicals—Lord Rayleigh, On the flow of viscous liquids, especially in three dimensions, Phil. Mag. (5) 36, 354-372(1893). Note that the number of the series is not separated by commas from the name of the periodical or the number of the volume.

Authors' initials should precede their names rather than follow it.

In quoted titles of books or papers, capital letters should be used only where the language requires this. Thus, On the flow of viscous fluids is preferable to On the Flow of Viscous Fluids, but the corresponding German title would have to be rendered as Über die Strömung zäher Flüssigkeiten.

Titles of books or papers should be quoted in the original language (with an English translation added in parentheses, if this seems desirable), but only English abbreviations should be used for bibliographical details like ed., vol., no., chap., p.

Footnotes: As far as possible, footnotes should be avoided. Footnotes containing mathematical formulas are not acceptable.

Abbreviations: Much space can be saved by the use of standard abbreviations like Eq., Eqs., Fig., Sec., Art., etc. These should be used, however, only if they are followed by a reference number. Thus, "Eq. (25)" is acceptable, but not "the preceding Eq." Moreover, if any one of these terms occurs as the first word of a sentence, it should be spelled out.

Special abbreviations should be avoided. Thus "boundary conditions" should always be spelled out and not be abbreviated as "b.c.,” even if this special abbreviation is defined somewhere in the text.
CONTENTS

R. C. Maccamy: An integro-differential equation with application in heat flow .. 1

R. C. Maccamy: A model for one-dimensional, nonlinear viscoelasticity .. 21

P. K. Currie, M. A. Hayes and P. M. O'Leary: Viscoelastic Rayleigh waves .. 35

David Durban and Menahem Baruch: Natural stress rate .. 55

Robert G. Payton: Symmetry-axis elastic waves for transversely isotropic media .. 63

P. J. Melvin: On deviations from linear wave motion in inhomogeneous stars .. 75

M. H. Williams: The resolvent of singular integral equations .. 99

C. E. Beevers: Continuous data-dependent results for a general theory of heat conduction in bounded and unbounded domains .. 111

L. Cesari and T. T. Bowman: Some error estimates in the alternative method .. 121

George H. Pimbley, Jr.: Wave solutions travelling along quadratic paths for the equation \((\partial u/\partial t) - (k(u)u_x)_x = 0\) .. 129

M. Braun and J. Hershenov: Periodic solutions of finite difference equations .. 139

Noboru Kikuchi: An analysis of the variational inequalities of seepage flow by finite-element methods .. 149

H. J. Landau: The notion of approximate eigenvalues applied to an integral equation of laser theory .. 165

P. S. Theocraris and N. I. Ioakimidis: Numerical integration methods for the solution of singular integral equations .. 173

NOTES:

Chih-Bing Ling: On Greenspan's transformation .. 185

N. Anderson and A. M. Arthurs: Dual extremum principles for a nonlinear diffusion problem .. 188

BOOK REVIEW SECTION:

M. Z. Nashed, editor: Generalized inverses and applications P. J. Davis 191

Ulf Grenander: Pattern synthesis: lectures in pattern theory, Vol. I. .. Alan L. Mackay 191
BOOK REVIEW SECTION

This book is the proceedings of an advanced seminar on generalized inverses and applications held at the Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, October, 1973. It contains a historical preface, thirteen articles, and an annotated bibliography containing 1775 references. If the authors of this bibliography (Nashed and Rall) had known about an additional paper on generalized inverses by the reviewer and lying incomplete on his desk, they obviously would not have had to list Jefferson's Declaration of Independence in order to bring the bibliography up to 1776 items in honor of the U.S.A. Bicentennial.

The articles are divided into four main areas: Theory of generalized inverses: M. Z. Nashed and G. F. Votruba, R. E. Kalman, A. Ben-Israel and T. N. E. Greville; Generalized inverses in analysis: L. B. Rall, M. R. Hestenes, M. Z. Nashed; Computational methods and approximation theory: B. Noble, G. H. Golub and V. Pereyra, M. Z. Nashed; Applications: F. J. Beutler and W. L. Root, A. Ben-Israel, Arthur Albert, J. S. Chipman. One of these articles (Chipman on estimation and aggregation in econometrics) is itself of book length. This is an important addition to the MRC's fine list of publications.

What is the theory of generalized inverses? In a word, and considering the matrix case, it is an attempt to deal, symbolically and otherwise, with the linear system $Ax = b$ when A is not square or when A is square and is not invertible. It is clear how this simple concern can then diffuse throughout the whole of linear mathematics and its applications.

A personal note: I first heard about generalized inverses in the mid-50's in a talk presented by T. N. E. Greville at the National Bureau of Standards. I found the subject appealing and have maintained a kind of amateur's interest in it over the years. I also thought it would be useful as a unifying tool. But, ye Gods, 1775 references in 20 years! How can an amateur keep up with such activity? I have read overviews (in this field and elsewhere) and it just doesn't work. To mix a metaphor: I find myself drowning in undigested material. Help!

One final observation: in view of one-thousand-page unifications, it would appear that there are no really unifying themes in mathematics.

P. J. Davis (Providence)

The problem of growth and form is one which has always been with us. Each generation of scientists makes its own attempt to explain the baffling phenomena of morphogenesis which characterize our world, particularly the living world. Indeed, organizing one's sense impressions and seeing regular patterns in them is one of the main characteristics of intelligent life. We must jump from the attempt of Democritos to explain everything in terms of a few kinds of atoms to D'Arcy Thompson's classic On Growth and Form (1916).

In essence, D'Arcy Thompson pointed out that many of the patterns to be observed in nature could be described in simple mathematical terms. That is, he carried the Galilean mathematization of the physical world into the biological, building on the continuous algebraic descriptions developed by the great mathematicians of the Enlightenment. Although the particulate nature of matter and the quantization of energy were then known, D'Arcy Thompson did not penetrate below the appearances to the next substrate of mechanism. It is only in our own time, first in chemistry, and then, since the
double helix was conclusively demonstrated, in biology, that molecular mechanisms have been taken
seriously.

Today's approaches are dominated by the concept algorithmic. In many systems, particularly
those of living matter, we see the segregation of information into special information-carrying structures
 stil made of the same atoms) which serve to organize the development of the remaining material and
to produce patterns.

Professor Grenander's project, then, of which this is only the first volume, is nothing less than to
describe all types of patterns. Applying Chaitin's criterion (Scientific American, May, 1975, pp. 47-52),
and earlier work by Martin Lof, we can define a pattern as being a structure which can be described in
terms of generators with fewer bits (of information) than are necessary to describe the whole structure
directly as it stands. That is, some rule for compressing the description is discernible. H. A. Fatmi and
R. W. Young (Nature, 228, 97, 3 Oct. 1970) have defined intelligence as "that faculty of mind, by which
order is perceived in a situation previously considered disordered".

Grenander, then, examines a very wide variety of patterns in space and time and uses his insight and
skill to show how they may be generated by relatively simple instructions. In this first volume the genera-
tion of patterns is examined. Extending the theme, the distortion of images by various transfer functions
is also included. The patterns considered range from crystal structures to PERT (schemes for the
evaluation of the order in which to do various jobs in a construction project).

It must be said that for a non-mathematician (such as the reviewer) much of the treatment seems
somewhat complicated. The principle should be that a problem is translated into mathematical terms
("projected into a mathematical space"), it is then manipulated in the exact mill of mathematics,
and the product is then projected back again into "problem space". The resultant is then compared
with the original, with the hope that some illumination will result. That is, it is hoped that the in-
formation necessarily lost in the two operations of projection will prove to have been insignificant,
and that the significant features of the situation thus have been correctly isolated.

The theory will be of value if it shows us something which we have not seen before. The test is
user acceptance. All the patterns discussed are being attacked by specialists who probably will not
take any notice of overall treatment unless either the mathematical formulation enables some out-
standing problem to be solved or juxtaposition shows that their problem has already been solved in
an isomorphous case.

The study involves a taxonomy of patterns. The most significant taxonomy is one where the objects
themselves are actually interrelated in an evolutionary way originating from each other (as, for example,
do insects). If the objects are not so related (as, for example, the crystal structures of minerals), taxonomy
is of only bureaucratic rather than of scientific significance.

Although crystal patterns are well understood and readily organized, the patterns of speech still
elude us, although progress is being made. As in amino-acid sequences, the invocation of statistical
elements is a confession of temporary ignorance of the detailed mechanisms.

Grenander's project is to be welcomed as an interesting and fundamental effort, although at present
it appears rather widely cast and eclectic. We must look forward to the complete study where results are
pulled together. Later volumes will be devoted to the analysis of patterns, to the ways in which they are
processed and to the formulation of a general theory.

Alan L. Mackay (London)