Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Bifurcations of the forced van der Pol oscillator


Authors: P. J. Holmes and D. A. Rand
Journal: Quart. Appl. Math. 35 (1978), 495-509
MSC: Primary 34C15
DOI: https://doi.org/10.1090/qam/492551
MathSciNet review: 492551
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the bifurcations of the variational equation of the forced van der Pol oscillator and prove the existence of bifurcations of saddle connection type as postulated by M. L. Cartwright [4] and A. W. Gillies [5].


References [Enhancements On Off] (What's this?)

  • [1] A. A. Andronov, E. A. Leontovich. I. I. Gordon and A. G. Maier, Theory of bifurcations of dynamic systems in the plane (translated from the original Russian), Israel Program of Scientific Translations, Jerusalem, 1971
  • [2] V. I. Arnol'd, Lectures on bifurcations in versal families, Russian Math. Surveys 27, 54-123 (1972) MR 0413191
  • [3] M. L. Cartwright Forced oscillations in non-linear systems: contributions to the theory of nonlinear oscillations, Annals Math. Studies No. 20, 1, 149-241 (1950)
  • [4] M. L. Cartwright, Forced oscillations in nearly-sinusoidal systems, J. Inst. Elec. Eng. 95, 88 (1948) MR 0027395
  • [5] A. W. Gillies, On the transformation of singularities and limit cycles of the variational equations of van der Pol, Quart. J. Mech. Appl. Math. 7, 152-167 (1954) MR 0063512
  • [6] C. Hayashi, Nonlinear oscillations in physical systems, McGraw Hill, 1964 MR 0170071
  • [7] M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds, Bull. Am. Math. Soc. 76, 1015-1019 (1970) MR 0292101
  • [8] E. Hopf, Abzweigung einer periodischen Lösung eines Differentialsystems, Akad. Wiss. Leipzig 94, 1-22 (1942)
  • [9] N. Krylov and N. N. Bogoliubov, Introduction to Non-linear Mechanics translated by S. Lefschetz, Annals of Math. Studies 11, Princeton. 1947
  • [10] M. C. Peixoto and M. M. Peixoto, Structural stability in the plane with enlarged boundary conditions, An. Acad. Brasil. Sci. 31, 135-160 (1959) MR 0107067
  • [11] S. Smale, Differentiable dynamical systems, Bull. Amer. Math Soc. 73, 747-817 (1967) MR 0228014
  • [12] J. Sotomayor, Generic one-parameter families of vector fields on two-dimensional manifolds, Publ. I.H.E.S. 43, 5-46 (1974) MR 0339279
  • [13] F. Takens, Singularities of vector fields, Publ. I.H.E.S. 43 47-100 (1974) MR 0339292
  • [14] F. Takens, Forced oscillations and bifurcations, in Applications of global analysis, Comm. 3 of the Math. Institute, Rijksuniversiteit Utrecht, 1974 MR 0478235
  • [15] V. S. Afraimovic and L. P. Sil'nikov, On small periodic perturbations of autonomous systems, Soviet Math. Dokl. 15, 206-211 (1974) MR 0338512
  • [16] E. C. Zeeman, Morse inequalities for diffeomorphisms with shoes and flows with solenoids, in Dynamical systems-Warwick 1974, ed. A. Manning, Lecture Notes in Mathematics No. 468, Springer-Verlag, 1975
  • [17] M. L. Cartwright and J. E. Littlewood, On non-linear differential equations of the second order: I. The equation $ \ddot y + k\left( {1 - {y^2}} \right)\dot y + y = b\lambda k\cos \left( {\lambda t + a} \right)$, $ k$ large, J. London Math. Soc. 20, 180-189 (1945) MR 0016789
  • [18] N. Levinson, A second order differential equation with singular solutions, Annals of Math. 50, 127-153 (1949) MR 0030079

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34C15

Retrieve articles in all journals with MSC: 34C15


Additional Information

DOI: https://doi.org/10.1090/qam/492551
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society