Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Hopf-Friedrichs bifurcation and the hunting of a railway axle

Author: R. R. Huilgol
Journal: Quart. Appl. Math. 36 (1978), 85-94
MSC: Primary 70.34; Secondary 34CXX
DOI: https://doi.org/10.1090/qam/478858
MathSciNet review: 478858
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: After deriving the equations of motion which govern the lateral and yaw motions of a railway axle, these are cast in the form of a system of first-order nonlinear differential equations. To this system the Hopf-Friedrichs bifurcation theory is applied to determine when a periodic orbit will bifurcate from the equilibrium position. Sufficient conditions to guarantee the stability of the orbit are investigated.

References [Enhancements On Off] (What's this?)

  • [1] F. W. Carter, Railway electric traction, Arnold (London), 1922
  • [2] Eberhard Hopf, Abzweigung einer periodischen Lösung von einer stationären eines Differentialsystems, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl. 95 (1943), no. 1, 3–22 (German). MR 0039141
  • [3] K. O. Friedrichs, Lectures on advanced ordinary differential equations, Notes by P. Berg, W. Hirsch, P. Treuenfels, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0224884
  • [4] A. B. Poore, On the theory and application of the Hopf-Friedrichs bifurcation theory, Arch. Rational Mech. Anal. 60 (1975/76), no. 4, 371–393. MR 0404766, https://doi.org/10.1007/BF00248886
  • [5] J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale; Applied Mathematical Sciences, Vol. 19. MR 0494309
  • [6] Lamberto Cesari, Functional analysis and Galerkin’s method, Michigan Math. J. 11 (1964), 385–414. MR 0173839
  • [7] J. K. Hale, Applications of alternative problems, Lecture Notes, Center for Dynamical Systems, Brown University, Providence, 1971
  • [8] R. P. Brann, Some aspects of the hunting of a railway axle, J. Sound. Vib. 4, 18-32 (1966)
  • [9] F. W. Carter, On the action of a locomotive driving wheel, Proc. Roy. Soc. Lond. A 112 151-157 (1926)
  • [10] J. J. Kalker, Survey of mechanics of contact between solid bodies, Zeit. angew. Math. Mech., 57, T3-T17 (1977)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 70.34, 34CXX

Retrieve articles in all journals with MSC: 70.34, 34CXX

Additional Information

DOI: https://doi.org/10.1090/qam/478858
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society