Asymptotic properties of best approximation by splines with variable knots

Authors:
D. L. Barrow and P. W. Smith

Journal:
Quart. Appl. Math. **36** (1978), 293-304

MSC:
Primary 41A15

DOI:
https://doi.org/10.1090/qam/508773

MathSciNet review:
508773

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the set of th-order splines on having at most interior knots, counting multiplicities. We prove the following sharp asymptotic behavior of the error for the best approximation of a sufficiently smooth function by the set :

**[1]**D. Barrow, C. Chui, P. Smith, and J. Ward,*Unicity of best mean approximation by second order splines with variable knots*, Math. Comp., to appear MR**0481754****[2]**C. de Boor,*On calculating with B-splines*, J. Approximation Theory**6**, 50-62 (1972) MR**0338617****[3]**C. de Boor,*The quasi-interpolant as a tool in elementary polynomial spline theory, in Approximation theory*(G. G. Lorentz, ed.), Academic Press, New York, 1973, 269-276 MR**0336159****[4]**C. de Boor,*Good approximation by splines with variable knots*, in*Spline functions and approximation theory*, A. Meir and A. Sharma, eds., Birkhoüser, Basel, 1972, 57-72**[5]**C. de Boor,*Good approximation with variable knots, II*, in*Conference on the numerical solution of differential equations*, Dundee, 1973, Springer Lecture Notes, vol. 363, 1974, 12-20**[6]**H. G. Burchard,*Splines (with optimal knots) are better*, J. Applicable Analysis**3**, 309-319 (1974) MR**0399708****[7]**H. G. Burchard and D. F. Hale,*Piecewise polynomial approximation on optimal meshes*, J. Approximation Theory**14**, 128-147 (1975) MR**0374761****[8]**H. G. Burchard,*On the degree of convergence of piecewise polynomial approximation on optimal meshes*, Trans. Amer. Math. Soc.**234**, 531-559 (1977) MR**0481758****[9]**D. S. Dodson,*Optimal order approximation by polynomial spline functions*, Ph.D. thesis, Purdue Univ., Lafayette, Ind., 1972**[10]**K. Jetter and G. Lange,*Die Eindeutigkeit -optimaler polynomialer Monospline*, Math. Z. (to appear). MR**0467094****[11]**D. McClure,*Nonlinear segmented function approximation and analysis of line patterns*, Quart. Appl. Math.**33**, 1-37 (1975) MR**0463769****[12]**J. Sacks and D. Ylvisaker,*Designs for regression problems with correlated errors III*, Ann. Math. Statist.**41**, 2057-2074 (1970) MR**0270530****[13]**J. Sacks and D. Ylvisaker,*Statistical designs and integral approximation*, in*Proceedings of the 12th Biennial Canadian Mathematical Society Seminar*(Ronald Pyke, ed.), 1971, 115-136 MR**0277069****[14]**I. J. Schoenberg,*Monosplines and quadrature formulae*, in*Theory and applications of spline functions*(T. N. E. Greville, ed.), Academic Press, New York, 1969, 157-207 MR**0241865****[15]**G. Wahba,*On the regression problem of Sacks and Ylvisaker*, Ann. Math. Statist.**42**, 1035-1053 (1971) MR**0279955****[16]**D. V. Widder,*The Laplace transform*, Princeton University Press, Princeton, 1946 MR**0005923**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
41A15

Retrieve articles in all journals with MSC: 41A15

Additional Information

DOI:
https://doi.org/10.1090/qam/508773

Article copyright:
© Copyright 1978
American Mathematical Society