Asymptotic properties of best approximation by splines with variable knots

Authors:
D. L. Barrow and P. W. Smith

Journal:
Quart. Appl. Math. **36** (1978), 293-304

MSC:
Primary 41A15

DOI:
https://doi.org/10.1090/qam/508773

MathSciNet review:
508773

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the set of th-order splines on having at most interior knots, counting multiplicities. We prove the following sharp asymptotic behavior of the error for the best approximation of a sufficiently smooth function by the set :

**[1]**D. L. Barrow, C. K. Chui, P. W. Smith, and J. D. Ward,*Unicity of best mean approximation by second order splines with variable knots*, Math. Comp.**32**(1978), no. 144, 1131–1143. MR**0481754**, https://doi.org/10.1090/S0025-5718-1978-0481754-1**[2]**Carl de Boor,*On calculating with 𝐵-splines*, J. Approximation Theory**6**(1972), 50–62. Collection of articles dedicated to J. L. Walsh on his 75th birthday, V (Proc. Internat. Conf. Approximation Theory, Related Topics and their Applications, Univ. Maryland, College Park, Md., 1970). MR**0338617****[3]**Carl de Boor,*The quasi-interpolant as a tool in elementary polynomial spline theory*, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 269–276. MR**0336159****[4]**C. de Boor,*Good approximation by splines with variable knots*, in*Spline functions and approximation theory*, A. Meir and A. Sharma, eds., Birkhoüser, Basel, 1972, 57-72**[5]**C. de Boor,*Good approximation with variable knots, II*, in*Conference on the numerical solution of differential equations*, Dundee, 1973, Springer Lecture Notes, vol. 363, 1974, 12-20**[6]**Hermann G. Burchard,*Splines (with optimal knots) are better*, Applicable Anal.**3**(1973/74), 309–319. MR**0399708**, https://doi.org/10.1080/00036817408839073**[7]**H. G. Burchard and D. F. Hale,*Piecewise polynomial approximation on optimal meshes*, J. Approximation Theory**14**(1975), no. 2, 128–147. MR**0374761****[8]**H. G. Burchard,*On the degree of convergence of piecewise polynomial approximation on optimal meshes*, Trans. Amer. Math. Soc.**234**(1977), no. 2, 531–559. MR**0481758**, https://doi.org/10.1090/S0002-9947-1977-0481758-4**[9]**D. S. Dodson,*Optimal order approximation by polynomial spline functions*, Ph.D. thesis, Purdue Univ., Lafayette, Ind., 1972**[10]**Kurt Jetter and Gerald Lange,*Die Eindeutigkeit 𝐿₂-optimaler polynomialer Monosplines*, Math. Z.**158**(1978), no. 1, 23–34 (German, with English summary). MR**0467094**, https://doi.org/10.1007/BF01214562**[11]**Donald E. McClure,*Nonlinear segmented function approximation and analysis of line patterns*, Quart. Appl. Math.**33**(1975/76), 1–37. MR**0463769**, https://doi.org/10.1090/S0033-569X-1975-0463769-X**[12]**Jerome Sacks and Donald Ylvisaker,*Designs for regression problems with correlated errors. III*, Ann. Math. Statist.**41**(1970), 2057–2074. MR**0270530**, https://doi.org/10.1214/aoms/1177696705**[13]**Jerome Sacks and Donald Ylvisaker,*Statistical designs and integral approximation*, Proc. Twelfth Biennial Sem. Canad. Math. Congr. on Time Series and Stochastic Processes; Convexity and Combinatorics (Vancouver, B.C., 1969) Canad. Math. Congr., Montreal, Que., 1970, pp. 115–136. MR**0277069****[14]**I. J. Schoenberg,*Monosplines and quadrature formulae*, Theory and Applications of Spline Functions (Proceedings of Seminar, Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1968) Academic Press, New York, 1969, pp. 157–207. MR**0241865****[15]**Grace Wahba,*On the regression design problem of Sacks and Ylvisaker*, Ann. Math. Statist.**42**(1971), 1035–1053. MR**0279955**, https://doi.org/10.1214/aoms/1177693331**[16]**David Vernon Widder,*The Laplace Transform*, Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, N. J., 1941. MR**0005923**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
41A15

Retrieve articles in all journals with MSC: 41A15

Additional Information

DOI:
https://doi.org/10.1090/qam/508773

Article copyright:
© Copyright 1978
American Mathematical Society