Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Monotone methods for the Thomas-Fermi equation

Author: J. W. Mooney
Journal: Quart. Appl. Math. 36 (1978), 305-314
MSC: Primary 80A30; Secondary 34B30
DOI: https://doi.org/10.1090/qam/508774
MathSciNet review: 508774
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The boundary-value problem for the ionized atom case of the Thomas-Fermi equation is transformed to a certain convex nonlinear boundary-value problem. Two iterative procedures, previously developed for such problems, are constructed for the ionized atom problem. A comparative analysis of the efficiency of the iteration schemes is presented. The existence and uniqueness of a solution is established and the solution is shown to have monotonic dependence on the boundary conditions. Numerical bounds are obtained for a specific problem.

References [Enhancements On Off] (What's this?)

  • [1] C. D. Luning and W. L. Perry, An iterative technique for solution of the Thomas-Fermi equation utilizing a nonlinear eigenvalue problem, Quart. Appl. Math. 35, 257-268 (1977) MR 0445056
  • 1. [2[ J. W. Mooney and G. F. Roach, Iterative bounds for the stable solutions of convex nonlinear boundary value problems, Proc. Roy. Soc. Edin. (A) 76, 81-94 (1976) MR 0440195
  • [3] J. W. Mooney, A unified approach to the solution of certain classes of nonlinear boundary value problems using monotone iterations. (to appear). MR 537330
  • [4] J. W. Mooney, Ph.D. Thesis, University of Strathclyde, 1976
  • [5] D. S. Cohen, Positive solutions of a class of nonlinear eigenvalue problems, J. Math. Mech. 17, 209-215 (1967) MR 0213695
  • [6] D. D. Joseph, Nonlinear heat generation in conducting solids, Int. J. Heat and Mass Transfer 8, 281-288 (1965)
  • [7] D. D. Joseph and E. M. Sparrow, Nonlinear diffusion induced by nonlinear sources, Quart. Appl Math. 28, 327-342 (1970) MR 0272272
  • [8] I. M. Gelfand, Some problems in theory of quasilinear equations, Amer. Math. Soc. Transl. 29, 295-381 (1963) MR 0153960
  • [9] D. A. Frank-Kamenetskii, Diffusion and heat transfer in chemical kinetics, Plenum, Princeton, 1969
  • [10] R. Aris, Mathematical theory of diffusion and reaction, vols. I, II, Clarendon, Oxford, 1975
  • [11] P. Csavinskzy, Calculation of diamagnetic susceptibilities of ions using a universal approximate analytical solution of the Thomas-Fermi equation, Bull. Amer. Phys. Soc. (2) 18, 726-727 (1973)
  • [12] L. F. Shampine, Some nonlinear eigenvalue problems, J. Math. Mech. 17, 1067-1072 (1968) MR 0226190
  • [13] H. B. Keller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16, 1361-1376 (1967) MR 0213694
  • [14] D. Sattinger, Topics in stability and bifurcation theory, Lecture Notes 309, Springer, 1973 MR 0463624
  • [15] K. H. Meyn and B. Werner, Randmaximum und Monotonieprinzipien für elliptische Randwertaufgaben mit Gebietszerlegungen, Abh. Math. Sem. Univ. Hamburg (1976)
  • [16] J. P. Keener and H. B. Keller, Positive solutions of convex nonlinear eigenvalue problems, J. Diff. Eqs. 16, 103-125 (1974) MR 0346305
  • [17] M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rat. Mech. Anal. 58, 207-218 (1975) MR 0382848
  • [18] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, 1967 MR 0219861
  • [19] A. R. Forsyth, A treatise on differential equations, Macmillan, London, 1961
  • [20] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1974 MR 0435697
  • [21] H. Amann, Existence of multiple solutions for nonlinear elliptic boundary value problems, Indiana University Math. J. 21, 925-935 (1972) MR 0320517

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 80A30, 34B30

Retrieve articles in all journals with MSC: 80A30, 34B30

Additional Information

DOI: https://doi.org/10.1090/qam/508774
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society