Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Plane-strain problem of two coplanar cracks in an initially stressed neo-Hookean elastic layer


Authors: Ranjit S. Dhaliwal and Brij Mohan Singh
Journal: Quart. Appl. Math. 36 (1979), 361-376
DOI: https://doi.org/10.1090/qam/99639
MathSciNet review: QAM99639
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: We consider the problem of determining the stress intensity factors and the crack energy in an infinitely long strip of an initially stressed neo-Hookean elastic material containing two coplanar Griffith cracks. We assume that the cracks are opened by a constant internal pressure and that the edges of the strip are either rigidly fixed or stress-free. By the use of Fourier transforms we reduce the problem to solving a set of triple integral equations with cosine kernel and a weight function. These equations are reduced to a Fredholm integral equation of the second kind by using finite Hilbert transform technique. Analytical expressions up to the order $ {\delta ^{ - 10}}$ are derived for the stress intensity factors and the crack energy, where $ 2\delta $ denotes the width of the strip and $ \delta $ is much greater than 1. Numerical values of the stress intensity factors and the crack energy are graphed to display the effect of initial stress.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Griffith, Phil. Trans. R. Soc. A221, 163 (1921)
  • [2] I. N. Sneddon and H. A. Elliot, Q. Appl. Math. 4, 262 (1946) MR 0017161
  • [3] T. J. Willmore, Q. J. Mech. Appl. Math. 2, 53 (1949) MR 0029690
  • [4] C. J. Tranter, Q. J. Mech. Appl. Math. 14, 283 (1961) MR 0129606
  • [5] M. Lowengrub and K. N. Srivastava, Int. J. Engng. Sci. 6, 425 (1968)
  • [6] E. Trefftz, ZAMM 13, 160 (1933)
  • [7] M. A. Biot, Phil. Mag. 27, Ser. 7, 468 (1939)
  • [8] M. A. Biot, ZAMM 20, 89 (1940) MR 0002311
  • [9] H. Neuber, ZAMM 23, 321 (1943) MR 0012565
  • [10] A. E. Green, R. S. Rivlin and R. T. Shield, Proc. Roy. Soc. A211, 128 (1952) MR 0047486
  • [11] A. E. Green and W. Zerna, Theoretical elasticity, Oxford, Clarendon Press, 114 (1954) MR 0064598
  • [12] H. Neuber, ZAMM 32, 325 (1952) MR 0053741
  • [13] H. Neuber, ZAMM 33, 10 (1953) MR 0053742
  • [14] H. Neuber, ZAMM 46, 221 (1966) MR 0207271
  • [15] M. A. Biot, Proc. Roy. Soc. A273, 306 (1963) MR 0152180
  • [16] M. A. Biot, J. Appl. Phys. 11, 522 (1940) MR 0002310
  • [17] M. A. Biot, Appl. Sci. Res. A12, 168 (1963)
  • [18] M. A. Biot, Quart. Appl. Math. 30, 379 (1972) MR 0400852
  • [19] M. A. Biot, Mechanics of incremental deformations, John Wiley, New York (1965) MR 0185873
  • [20] M. Kurashige, ZAMM 49, 671 (1969)
  • [21] M. Kurashige, ZAMM 53, 112 (1973)
  • [22] M. Kurashige, ZAMM 52, 245 (1972)


Additional Information

DOI: https://doi.org/10.1090/qam/99639
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society