Free boundary problems with radiation boundary conditions

Author:
L. N. Tao

Journal:
Quart. Appl. Math. **37** (1979), 1-10

MSC:
Primary 35C10; Secondary 35R35

DOI:
https://doi.org/10.1090/qam/530665

MathSciNet review:
530665

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper is concerned with the free boundary problem of a semi-infinite body of arbitrarily prescribed initial temperature, subject to a mixed or radiation boundary condition at its face. The analytically exact solutions of temperature of both phases and the interfacial position are established in series of time and functions of the error integral family. Convergence of these series solutions is studied and proved. A few remarks on the solutions and their simplifications are then offered. A discussion on the analyticity of the solutions is also given. The paper concludes with an illustrative example, the so-called one-phase problem.

**[1]**G. F. B. Riemann and H. Weber,*Die partiellen Differentialgleichungen der mathematischen Physik*, Bd.2, 5-fe Aufl. Braunschweig, 1912**[2]**H. S. Carslaw and J. C. Jaeger,*Conduction of heat in solids*, 2nd ed., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1988. MR**959730****[3]**J. Crank,*The mathematics of diffusion*, 2nd ed., Clarendon Press, Oxford, 1975. MR**0359551****[4]**L. I. Rubenšteĭn,*The Stefan problem*, American Mathematical Society, Providence, R.I., 1971. Translated from the Russian by A. D. Solomon; Translations of Mathematical Monographs, Vol. 27. MR**0351348****[5]**J. R. Ockendon and W. R. Hodgkin (eds.),*Moving boundary problems in heat flow and diffusion*, Clarendon Press, Oxford, 1975**[6]**R. W. Ruddle,*The solidification of castings*, Inst. Metals, London, 1957**[7]**S. G. Bankoff,*Heat conduction or diffusion with change of phase*, Adv. in Chem. Eng.**5**, 75-150 (1964)**[8]**J. C. Muehbauer and J. E. Sunderland,*Heat conduction with freezing or melting*, Appl. Mech. Rev.**18**, 951-959 (1965)**[9]**W. A. Tiller,*Principles of solidification*, in*Arts and sciences of growing crystals*, ed. J. J. Gilman, Wiley, New York, 1963**[10]**B. A, Boley,*Survey of recent developments in the fields of heat conduction in solids and thermo-elasticity*. Nuclear Eng. Des.**18**, 377-399 (1972)**[11]**L. N. Tao,*The Stefan problem with arbitrary initial and boundary conditions*, Quart. Appl. Math.**36**(1978/79), no. 3, 223–233. MR**508769**, https://doi.org/10.1090/S0033-569X-1978-0508769-2**[12]**L. N. Tao,*On free boundary problems with arbitrary initial and flux conditions*, to be published**[13]**D. V. Widder,*The heat equation*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 67. MR**0466967****[14]**L. N. Tao,*On the material time derivative of arbitrary order*, Quart. Appl. Math.**36**(1978/79), no. 3, 323–324. MR**508776**, https://doi.org/10.1090/S0033-569X-1978-0508776-9**[15]**Charles Jordan,*Calculus of finite differences*, Third Edition. Introduction by Harry C. Carver, Chelsea Publishing Co., New York, 1965. MR**0183987****[16]**Avner Friedman,*Free boundary problems for parabolic equations. I. Melting of solids.*, J. Math. Mech.**8**(1959), 499–517. MR**0144078****[17]**Avner Friedman,*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836****[18]**J. R. Cannon and C. Denson Hill,*Existence, uniqueness, stability, and monotone dependence in a Stefan problem for the heat equation*, J. Math. Mech.**17**(1967), 1–19. MR**0270000**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35C10,
35R35

Retrieve articles in all journals with MSC: 35C10, 35R35

Additional Information

DOI:
https://doi.org/10.1090/qam/530665

Article copyright:
© Copyright 1979
American Mathematical Society