Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Free boundary problems with radiation boundary conditions


Author: L. N. Tao
Journal: Quart. Appl. Math. 37 (1979), 1-10
MSC: Primary 35C10; Secondary 35R35
DOI: https://doi.org/10.1090/qam/530665
MathSciNet review: 530665
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper is concerned with the free boundary problem of a semi-infinite body of arbitrarily prescribed initial temperature, subject to a mixed or radiation boundary condition at its face. The analytically exact solutions of temperature of both phases and the interfacial position are established in series of time and functions of the error integral family. Convergence of these series solutions is studied and proved. A few remarks on the solutions and their simplifications are then offered. A discussion on the analyticity of the solutions is also given. The paper concludes with an illustrative example, the so-called one-phase problem.


References [Enhancements On Off] (What's this?)

  • [1] G. F. B. Riemann and H. Weber, Die partiellen Differentialgleichungen der mathematischen Physik, Bd.2, 5-fe Aufl. Braunschweig, 1912
  • [2] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2nd ed., Clarendon Press, Oxford, 1959 MR 959730
  • [3] J. Crank, The mathematics of diffusion, 2nd ed., Clarendon Press, Oxford, 1975 MR 0359551
  • [4] L. I. Rubinstein, The Stefan problem (English translation), Am. Math. Soc., 1971 MR 0351348
  • [5] J. R. Ockendon and W. R. Hodgkin (eds.), Moving boundary problems in heat flow and diffusion, Clarendon Press, Oxford, 1975
  • [6] R. W. Ruddle, The solidification of castings, Inst. Metals, London, 1957
  • [7] S. G. Bankoff, Heat conduction or diffusion with change of phase, Adv. in Chem. Eng. 5, 75-150 (1964)
  • [8] J. C. Muehbauer and J. E. Sunderland, Heat conduction with freezing or melting, Appl. Mech. Rev. 18, 951-959 (1965)
  • [9] W. A. Tiller, Principles of solidification, in Arts and sciences of growing crystals, ed. J. J. Gilman, Wiley, New York, 1963
  • [10] B. A, Boley, Survey of recent developments in the fields of heat conduction in solids and thermo-elasticity. Nuclear Eng. Des. 18, 377-399 (1972)
  • [11] L. N. Tao, The Stefan problem with arbitrary initial and boundary conditions. Quart. Appl. Math. 36, 223-233 (1978) MR 508769
  • [12] L. N. Tao, On free boundary problems with arbitrary initial and flux conditions, to be published
  • [13] D. V. Widder, The heat equation. Academic Press, New York, 1975 MR 0466967
  • [14] L. N. Tao, On the material time derivative of arbitrary order. Quart. Appl. Math. 36, 323-324 (1978) MR 508776
  • [15] C. Jordan, Calculus of finite differences, Chelsea, New York, 1965 MR 0183987
  • [16] A. Friedman, Free boundary problems for parabolic equations, I, Melting of solids, J. Math. Mech. 8, 499-517 (1959) MR 0144078
  • [17] A. Friedman, Partial differential equations of parabolic type, Prentice Hall, Englewood Cliffs, N. J., 1964 MR 0181836
  • [18] J. R. Cannon and C. D. Hill, Existence, uniqueness, stability, and monotone dependence in a Stefan problem for the heat equation, J. Math. Mech. 17, 1-20 (1967) MR 0270000

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35C10, 35R35

Retrieve articles in all journals with MSC: 35C10, 35R35


Additional Information

DOI: https://doi.org/10.1090/qam/530665
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society