Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Normal modes, uncoupling, and stability for a class of nonlinear oscillators

Authors: G. Pecelli and E. S. Thomas
Journal: Quart. Appl. Math. 37 (1979), 281-301
MSC: Primary 34C15; Secondary 58F14, 58F22, 58F30, 70K20
DOI: https://doi.org/10.1090/qam/548988
MathSciNet review: 548988
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnold, Kleine Nenner and Stabilitätsprobleme der klassischen Mechanik und der Himmelsmechanik, Uspekhi Mat. Nauk USSR 18, 91-192 (1963) MR 0170705
  • [2] F. M. Arscott, Periodic differential equations, Pergamon, 1964
  • [3] R. Churchill, H. Jurenka and E. Thomas, A note on iso-energentic stability, Int. J. Nonlinear Mech., 12, 37-43 (1977) MR 0449082
  • [4] R. Churchill, G. Pecelli, and D. Rod, Stability transitions for periodic orbits in Hamiltonian systems, to appear MR 569596
  • [5] R. Churchill, G. Pecelli, D. Rod and S. Sackolic, Coexistence of stable and random motion, Rocky Mountain J. Math. 7, 445-456 (1977) MR 0467817
  • [6] C. H. Cooke and R. A. Struble, On the existence of periodic solutions and normal mode vibrations of nonlinear systems, Quart. Appl. Math. 24, 177-193 (1966) MR 0201732
  • [7] W. B. Gordon, A theorem on the existence of periodic solutions to Hamiltonian systems with convex potential, J. Diff. Eq. 10, 324-334 (1971) MR 0292113
  • [8] P. Hartman, Ordinary differential equations, John Wiley, 1964 MR 0171038
  • [9] C. S. Hsu, On a restricted class of Hill's equations and some applications, J. Appl. Mech. 28e, 551-556 (1961).
  • [10] C. S. Hsu, On the parametric excitations of a dynamic system having multiple degrees of freedom, J. Appl. Mech. 30E, 367-372 (1963) MR 0160990
  • [11] N. W. McLachlan, Ordinary non-linear differential equations in engineering and physical sciences (2nd ed.), Clarendon Press, 1956 MR 0093612
  • [12] W. Magnus and S. Winkler, Hill's equation, Interscience Publishers, 1966
  • [13] J. K. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, Nr. 1 (1962) MR 0147741
  • [14] C. H. Pak and R. M. Rosenberg, On the existence of normal mode vibrations in nonlinear systems, Quart. Appl. Math. 26, 403-416 (1968) MR 0235209
  • [15] G. Pecelli and E. Thomas, An example of elliptic stability with large parameters: Lamé's equation and the Arnold-Moser-Rüssmann criterion, Quart. Appl. Math. 36, 129-140 (1978) MR 0502471
  • [16] G. Pecelli and E. S. Thomas, On a class of modes defined by Rosenberg, to appear
  • [17] R. M. Rosenberg, On the existence of normal mode vibrations of nonlinear systems with two degrees of freedom, Quart. Appl. Math. 22, 217-234 (1964) MR 0163464
  • [18] R. M. Rosenberg and C. P. Atkinson, On the natural modes and their stability of non-linear two-degree-of-freedom systems, J. Appl. Mech. 26, 377-385, (1959) MR 0108009
  • [19] R. M. Rosenberg and J. K. Kuo, Nonsimilar normal mode vibrations of nonlinear systems having two degrees of freedom, J. Appl. Mech. 31E, 283-290 (1964) MR 0188564
  • [20] H. Rüssmann, Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Annalen 19, 55-72 (1967)
  • [21] H. D. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Zeit. 51, 197-216 (1947)
  • [22] C. L. Siegel and J. K. Moser, Lectures on celestial mechanics, Springer, Grundlehren Bd. 187 (1971) MR 0502448
  • [23] A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Inv. Math. 20, 47-57 (1973) MR 0328222

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34C15, 58F14, 58F22, 58F30, 70K20

Retrieve articles in all journals with MSC: 34C15, 58F14, 58F22, 58F30, 70K20

Additional Information

DOI: https://doi.org/10.1090/qam/548988
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society