Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Theoretical analysis of steady nonadiabatic premixed laminar flames


Author: Stephen B. Margolis
Journal: Quart. Appl. Math. 38 (1980), 61-89
MSC: Primary 80A30; Secondary 34E05
DOI: https://doi.org/10.1090/qam/575833
MathSciNet review: 575833
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A one-dimensional, steady, non-adiabatic, premixed laminar flame is assumed semi-infinite with the burner at the origin, and the investigation centers on the asymptotic behavior of the temperature and species mass fractions in the burned region near infinity. After a consideration of the general $ N$-species problem, specific results are obtained for the global two-step reaction $ {v_r}R \to {\mu _i}I$, $ {v_r}I \to {\mu _p}P$, where $ R$, $ I$, $ P$ denote reactant, intermediate, and product species, respectively, and $ {v_r}$, $ {v_i}$, $ {\mu _i}$, $ {\mu _p}$ are stoichiometric coefficients. Assuming Arrhenius kinetics, it is shown that the classical linearized asymptotic theory is not applicable unless $ {v_r} = {v_i} = 1$, in which case the approach to burned equilibrium is an exponential decay. Consequently, a nonlinear theory applicable to arbitrary $ {v_r}$ and $ {v_i}$ is presented which shows that in general the asymptotic decay is algebraic. It is further shown that boundedness of the solution at infinity permits the arbitrary specification of only three boundary conditions on the original sixth-order differential system. This result is illustrated by a comprehensive analytical example and the computational implications for the general $ N$-species problem are discussed.


References [Enhancements On Off] (What's this?)

  • [1] F. A. Williams, Combustion theory (Addison-Wesley, Palo Alto, 1965), Chapter 5 and Appendix B
  • [2] J. O. Hirschfelder, C. F. Curtiss, and D. E. Campbell, in Fourth symposium (International) on combustion (Williams and Wilkins, Baltimore, 1953), p. 190
  • [3] W. B. Bush and F. E. Fendell, Combust. Sci. and Tech. 1, 421 (1970)
  • [4] J. F. Clarke, Combust. Sci. and Tech. 10, 189 (1975)
  • [5] G. F. Carrier, F. E. Fendell, and W. B. Bush, Combust. Sci. and Tech. 18, 33 (1978)
  • [6] D. B. Spalding, Phil. Trans. Roy. Soc. London A249 1 (1956)
  • [7] D. B. Spalding and P. L. Stephenson, Proc. Roy. Soc. London A324, 315 (1971)
  • [8] J. O. Hirschfelder, C. F. Curtiss, and D. E. Campbell, J. Phys. Chem. 57, 403 (1953)
  • [9] K. A. Wilde, Combust. Flame 18, 43 (1972)
  • [10] G. Dixon-Lewis, Proc. Roy. Soc. London A317, 235 (1970)
  • [11] Jack K. Hale, Ordinary differential equations, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1969. Pure and Applied Mathematics, Vol. XXI. MR 0419901
  • [12] S. B. Margolis, J. Computational Physics 27, 410 (1978)
  • [13] D. B. Spalding, P. L. Stephenson, and R. G. Taylor, Combust. Flame 17, 55 (1971)
  • [14] L. Biedjian, Combust. Flame 20, 5 (1973)
  • [15] V. S. Berman and Iu. S. Riazantsev, J. Appl. Math. and Mech. (PMM) 37, 995 (1973)
  • [16] A. M. Kanury, Introduction to combustion phenomena (Gordon and Breach, New York, 1975), p. 11
  • [17] G. F. Carrier, F. E. Fendell, and F. E. Marble, The effect of strain rate on diffusion flames, SIAM J. Appl. Math. 28 (1975), no. 2, 463–500. MR 0418766, https://doi.org/10.1137/0128038
  • [18] F. A. Williams, in Annual review of fluid mechanics, Vol. 3 (Annual Reviews, Inc., Palo Alto, 1971), p. 171
  • [19] L. Sirovich, Techniques of asymptotic analysis, Applied Mathematical Sciences, Vol. 2, Springer-Verlag, New York-Berlin, 1971. MR 0275034
  • [20] Herbert B. Keller, Numerical solution of two point boundary value problems, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. Regional Conference Series in Applied Mathematics, No. 24. MR 0433897
  • [21] A. C. Hindmarsh, Lawrence Livermore Laboratory Report UCID-30130 (1976)
  • [22] M. R. Scott and H. A. Watts, in Fifth symposium on computers in chemical engineering (Vysoke Tatry, Czechoslovakia, 1977); also Sandia Laboratories Report SAND77-0091
  • [23] R. M. Kendall and J. T. Kelly, Aerotherm TR-75-158 (1975)
  • [24] N. K. Madsen and R. F. Sincovec, ACM Trans. on Math. Software, to appear (1980)
  • [25] G. H. Markstein, ed., Non-steady flame propagation (MacMillan, New York, 1964)
  • [26] S. B. Margolis, Combust. Sci. Tech., to appear (1980)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 80A30, 34E05

Retrieve articles in all journals with MSC: 80A30, 34E05


Additional Information

DOI: https://doi.org/10.1090/qam/575833
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society