Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Translational addition theorems for spheroidal scalar and vector wave functions


Authors: Bateshwar P. Sinha and Robert H. Macphie
Journal: Quart. Appl. Math. 38 (1980), 143-158
MSC: Primary 33A55
DOI: https://doi.org/10.1090/qam/580875
MathSciNet review: 580875
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The translational addition theorems for spheroidal scalar wave functions $ R_{mn}^{\left( i \right)}\left( {h, \xi } \right){S_{mn}}\left( {h, \eta } \right)\exp \left( {jm\phi } \right); i = 1, 3, 4$ and spheroidal vector wave functions $ M_{mn}^{x, y, z\left( i \right)}\left( {h; \xi , \\ \eta, \phi } \right), N_{mn}^{x, y, z\left( i \right)}\left( {h; \xi, \eta, \phi } \right); i = 1, 3, 4$, with reference to the spheroidal coordinate system at the origin $ O$, have been obtained in terms of spheroidal scalar and vector wave functions with reference to the translated spheroidal coordinate system at the origin $ O'$, where $ O'$ has the spherical coordinates ( $ {r_0},{\theta _0},{\phi _0}$) with respect to $ O$. These addition theorems are useful in acoustics and electromagnetics in those cases involving spheroidal radiators and scatterers.


References [Enhancements On Off] (What's this?)

  • [1] B. Friedman and J. Russek, Addition theorems for spherical waves, Quart. Appl. Math. 12, 13-23 (1954) MR 0060649
  • [2] S. Stein, Addition theorems for spherical wave functions, Quart. Appl. Math. 19, 15-24 (1961) MR 0120407
  • [3] O. R. Cruzan, Translational addition theorems for spherical vector wave functions, Quart. Appl. Math. 20, 33-40 (1962) MR 0132851
  • [4] J. H. Bruning and Y. T. Lo, Multiple scattering of EM waves by spheres, Part I, IEEE Trans. AP-19, 379-390 (1971)
  • [5] B. P. Sinha and R. H. MacPhie, Electromagnetic scattering by prolate spheroids for plane waves with arbitrary polarization and angle of incidence, Rad. Sc. 12, 171-184 (1977) MR 0459329
  • [6] C. Flammer, Spheroidal wave functions, Stanford Univ. Press, Stanford, Calif., 1957, pp. 16-43 MR 0089520
  • [7] J. A. Stratton, Electromagnetic theory, McGraw-Hill, N.Y., 1941, p. 410, eq. (60)
  • [8] A. R. Edmonds, Angular momentum in quantum mechanics, Princeton Univ. Press, Princeton, N.J., 1957 MR 0095700

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 33A55

Retrieve articles in all journals with MSC: 33A55


Additional Information

DOI: https://doi.org/10.1090/qam/580875
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society