Shearing motions and the formation of shocks in an elastic circular tube

Authors:
R. L. Fosdick and G. P. MacSithigh

Journal:
Quart. Appl. Math. **38** (1980), 191-207

MSC:
Primary 35L65; Secondary 73C99

DOI:
https://doi.org/10.1090/qam/580879

MathSciNet review:
580879

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**R. Courant and K. O. Friedrichs,*Supersonic flow and shock waves*, Wiley-Interscience, New York, 1948 MR**0029615****[2]**R. Courant and P. D. Lax,*Nonlinear partial differential equations with two dependent variables*, Comm. Pure Appl. Math.**2**(1949) MR**0033443****[3]**P. D. Lax,*Hyperbolic systems of conservation laws II*, Comm. Pure Appl. Math.**10**(1957) MR**0093653****[4]**P. D. Lax,*Development of singularities of solutions of nonlinear partial differential equations*, J. Mathematical Phys.**5**(1964) MR**0165243****[5]**P. D. Lax,*Hyperbolic systems of conservation laws and the mathematical theory of shock waves*, in*Regional Conference Series in Applied Mathematics*, SIAM 1973 MR**0350216****[6]**N. J. Zabusky,*Exact solution for the vibrations of a nonlinear continuous model string*, J. Mathematical Phys.**3**(1962) MR**0146545****[7]**R. C. MacCamy and V. J. Mizel,*Existence and non-existence in the large of solutions of quasilinear wave equations*, Arch. Rat. Mech. Anal.**25**(1967) MR**0216165****[8]**A. Jeffrey,*The evolution of discontinuities in solutions of homogeneous nonlinear hyperbolic equations having smooth initial data*, J. Math. Mech.**17**(1967) MR**0236525****[9]**A. Jeffrey,*Quasilinear hyperbolic systems and waves*. Research Notes in Mathematics, Pitman, San Francisco, 1976 MR**0417585****[10]**J. Nishida,*Global smooth solutions for the second-order quasilinear wave equation with the first-order dissipation*, unpublished (1975)**[11]**M. Slemrod,*Instability of steady shearing flows in a nonlinear viscoelastic fluid*. Arch. Rat. Mech. Anal.**68**(1979) MR**509225****[12]**B. L. Rozhdestvenskii,*On the discontinuity of solutions of quasilinear wave equations*, Amer. Math. Soc. Transl. (2)**101**(1973)**[13]**F. John,*Formation of singularities in one-dimensional nonlinear wave propagation*, Comm. Pure Appl. Math.**27**(1974) MR**0369934****[14]**W. Kosinski,*Gradient catastrophe in the solution of nonlinear hyperbolic systems*, J. Math. Anal. Appl.**61**(1977) MR**0460912****[15]**P. H. Chang,*On the breakdown phenomena of solutions of quasilinear wave equations*, Mich. Math. J.**23**(1976) MR**0460910****[16]**V. Thomée,*Difference methods for two-dimensional mixed problems for hyperbolic first-order systems*, Arch. Rat. Mech. Anal.**8**(1961). MR**0129555****[17]**A. S. D. Wang,*On free oscillations of elastic incompressible bodies in finite shear*, Int. J. Engng. Sci.**7**(1969)**[18]**C. C. Wang and C. Truesdell,*Introduction to rational elasticity*, Nordhoff, 1973 MR**0468442****[19]**R. J. Knops, H. A. Levine and L. E. Payne,*Non-existence, instability, and growth theorems for solutions of a class of abstract nonlinear equations with applications to nonlinear elastodynamics*, Arch. Rational Mech. Analysis**55**(1974) MR**0364839****[20]**D. G. Schaeffer,*A regularity theorem for conservation laws*, Advances Math.**11**(1973). MR**0326178**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L65,
73C99

Retrieve articles in all journals with MSC: 35L65, 73C99

Additional Information

DOI:
https://doi.org/10.1090/qam/580879

Article copyright:
© Copyright 1980
American Mathematical Society