Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

New results on some classical parabolic free-boundary problems


Authors: A. Fasano and M. Primicerio
Journal: Quart. Appl. Math. 38 (1981), 439-460
MSC: Primary 35K85; Secondary 80A20
DOI: https://doi.org/10.1090/qam/614552
MathSciNet review: 614552
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. Fasano and M. Primicerio, General free boundary problems for the heat equation I, J. Math. Anal. Appl. 57, 694-723 (1977); II, ibid. 58, 202-231 (1977); III, ibid. 59, 1-14 (1977) MR 0487016
  • [2] A. Schatz, Free boundary problems of Stefan type with prescribed flux, J. Math. Anal. Appl. 28, 569-580 (1969) MR 0267285
  • [3] B. Sherman, A general one-phase Stefan problem, Quart. Appl. Math. 28, 377-382 (1970) MR 0282082
  • [4] B. Sherman, General one-phase Stefan problems and free boundary problems for the heat equation with Cauchy data prescribed on the free boundary, SIAM J. Appl. Math. 20, 555-570 (1971) MR 0287193
  • [5] J. Bather, Optimal stopping problems for Brownian motion, Adv. Appl. Prob. 2, 259-286 (1970) MR 0283920
  • [6] A. Bensoussan and J. L. Lions, Problèmes de temps d'arrêt optimal et inéquations variationelles paraboliques, Applic. Anal. 3, 267-295 (1973) MR 0449843
  • [7] D. B. Kotlow, A free boundary problem connected with the optimal stopping problem for diffusion processes, Trans. Amer. Math. Soc. 194, 457-478 (1973) MR 0365729
  • [8] A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Funct. Anal. 18, 151-176 (1975) MR 0477461
  • [9] A. Friedman, Analyticity of the free boundary for the Stefan problem, Arch. Rat. Mech. Anal. 61, 97-125 (1976) MR 0407452
  • [10] A. Friedman and R. Jensen, Convexity of the free boundary in the Stefan problem and in the dam problem, Arch. Rat. Mech. Anal. 67, 1-24 (1977) MR 473315
  • [11] R. Jensen, Smoothness of the free boundary in the Stefan problem with supercooled water, to appear MR 503966
  • [12] P. van Moerbecke, An optimal stopping problem for linear reward, Acta Math. 132, 1-41 (1974) MR 0376225
  • [13] P. van Moerbecke, About optimal stopping problems, Arch. Rat. Mech. Anal. 60, 101-148 (1976)
  • [14] E. Magenes, Topics in parabolic equations; some typical free boundary problems, in Boundary value problems for linear evolution partial equations (ed. Garnir), 1977, 239-312 MR 0470497
  • [15] J. R. Ockendon and W. R. Hodgkins, Moving boundary problems in heat flow and diffusion, Clarendon Press, Oxford (1975)
  • [16] D. G. Wilson, A. D. Solomon and P. T. Boggs, Moving boundary problems, Academic Press (1978) MR 0466887
  • [17] J. Crank and R. S. Gupta, A moving boundary problem arising from the diffusion of oxygen in absorbing tissues, J. Inst. Maths. Applics. 10, 19-33 (1972) MR 0347105
  • [18] E. Hansen and P. Hougaard, On a moving boundary problem from biomechanics, J. Inst. Maths. Applics. 13, 385-398 (1974)
  • [19] C. Baiocchi and G. A. Pozzi, An evolution variational inequality related to a diffusion-absorption problem, Appl. Math. Optim. 2, 304-314 (1976) MR 0430538
  • [20] C. Baiocchi and G. A. Pozzi, Error estimates and free boundary convergence for a finite difference discretization of a parabolic variational inequality, to appear RAIRO. MR 0464607
  • [21] J. C. W. Rogers, A free boundary problem as diffusion with nonlinear absorption, J. Inst. Maths. Applics. 20, 261-268 (1977) MR 0455492
  • [22] A. E. Berger, M. Ciment and J. C. W. Rogers, Numerical solution of a diffusion consumption problem with a free boundary, SIAM J. Num. Anal. 12, 646-672 (1975) MR 0383779
  • [23] A. E. Berger, The truncation method for the solution of a class of variational inequalities, RAIRO 10, 29-42 (1976) MR 0455489
  • [24] H. Block, Sur les équations aux dérivées partielles de type parabolique, Ark. Matem. Astr. Fys. 6, n. 31 (1910)
  • [25] D. G. Schaeffer, A new proof of the infinite differentiability of the free boundary in the Stefan problem, J. Diff. Eq. 20, 266-269 (1976) MR 0390499
  • [26] A. Fasano and M. Primicerio, La diffusione del colore in uno strato di spessore variabile in presenza di scambi termici non lineari con l'ambiente, Rend. Sem. Mat. Univ. Padova 50, 269-330 (1973) MR 0366241
  • [27] A. Fasano and M. Primicerio, Su un problema unidimensionale di diffusione in un mezzo a contorno mobile con condizioni ai limiti non lineari, Ann. Mat. Pura Appl. (IV) 93, 333-357 (1972) MR 0410084
  • [28] Carslaw and Jaeger, Conduction of heat in solids, Clarendon Press, Oxford (1959)
  • [29] S. N. Kruzkov, On some problems with unknown boundaries for the heat conduction equation, Prikl. Mat. Meh. 31, 1009-1020 (1967) MR 0231063

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35K85, 80A20

Retrieve articles in all journals with MSC: 35K85, 80A20


Additional Information

DOI: https://doi.org/10.1090/qam/614552
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society