Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A note on the stability of traveling-wave solutions to a class of reaction-diffusion systems

Author: Jonathan Bell
Journal: Quart. Appl. Math. 38 (1981), 489-496
MSC: Primary 35B40; Secondary 35K55, 80A20, 92A15
DOI: https://doi.org/10.1090/qam/614555
MathSciNet review: 614555
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Many classes of reaction-diffusion systems have been shown to have traveling-wave solutions. For a class of such systems for which a comparison theorem can be used, we establish a wave stability result which roughly states that these wave solutions are asymptotically stable to perturbations which lie in some weighted $ {L_p}$-space if their speeds are sufficiently large. We then apply this result to some excitable systems, namely a model of the Belousov-Zhabotinskii reaction, a substrate-inhibition biochemical model, and a class of models recently studied by Fife.

References [Enhancements On Off] (What's this?)

  • [1] Jonathan Bell, Modeling parallel, unmyelinated axons: pulse trapping and ephaptic transmission, SIAM J. Appl. Math. 41 (1981), no. 1, 168–180. MR 622880, https://doi.org/10.1137/0141012
  • [2] Abraham Berman and Robert J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Computer Science and Applied Mathematics. MR 544666
  • [3] N. F. Britton and J. D. Murray, Threshold, wave and cell-cell avalanche behaviour in a class of substrate inhibition oscillators, J. Theoret. Biol. 77 (1979), no. 3, 317–332. MR 539085, https://doi.org/10.1016/0022-5193(79)90359-X
  • [4] K. N. Chueh, C. C. Conley, and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (1977), no. 2, 373–392. MR 0430536, https://doi.org/10.1512/iumj.1977.26.26029
  • [5] Charles C. Conley and Joel A. Smoller, On the structure of magnetohydrodynamic shock waves, Comm. Pure Appl. Math. 27 (1974), 367–375. MR 0368586, https://doi.org/10.1002/cpa.3160270306
  • [6] R. J. Field and R. M. Noyes, Limit cycle oscillations in a model of a real chemical reaction, J. Chem. Phys. 60, 1877-1884 (1974)
  • [7] Paul C. Fife, Singular perturbation and wave front techniques in reaction-diffusion problems, Asymptotic methods and singular perturbations (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1976) Amer. Math. Soc., Providence, R.I., 1976, pp. 23–50. SIAM-AMS Proceedings, Vol. X. MR 0521628
  • [8] Paul C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin-New York, 1979. MR 527914
  • [9] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
  • [10] I. M. Gel′fand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. (2) 29 (1963), 295–381. MR 0153960
  • [11] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117, 500-544 (19 )
  • [12] Frank Hoppensteadt, Mathematical theories of populations: demographics, genetics and epidemics, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. Regional Conference Series in Applied Mathematics. MR 0526771
  • [13] L. N. Howard and N. Kopell, Wave trains, shock fronts, and transition layers in reaction-diffusion equations, Mathematical aspects of chemical and biochemical problems and quantum chemistry (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1974) Amer. Math. Soc., Providence, R. I., 1974, pp. 1–12. SIAM-AMS Proceedings, Vol. VIII. MR 0433038
  • [14] Alan Jeffrey and Tsunehiko Kakutani, Stability of the Burgers shock wave and the Korteweg-de Vries soliton., Indiana Univ. Math. J. 20 (1970/1971), 463–468. MR 0268502, https://doi.org/10.1512/iumj.1970.20.20039
  • [15] D. A. Larson, On the existence and stability of bifurcated solitary wave solutions to nonlinear diffusion equations, J. Math. Anal. Appl. preprint, to appear.
  • [16] Y. I. Kanel', The behavior of solutions of the Cauchy problem with the time tends to infinity, in the case of quasilinear equations arising in the theory of combustion, DAN SSSR, 132, 268-271 (1960)
  • [17] Y. I. Kanel', Some problems involving burning-theory equations, DAN SSSR 136, 277-280 (1961)
  • [18] J.-P. Kernevez, G. Joly, M.-C. Duban, B. Bunow, and D. Thomas, Hysteresis, oscillations, and pattern formation in realistic immobilized enzyme systems, J. Math. Biol. 7 (1979), no. 1, 41–56. MR 648839, https://doi.org/10.1007/BF00276413
  • [19] Gene A. Klaasen and William C. Troy, The asymptotic behavior of solutions of a system of reaction-diffusion equations which models the Belousov-Zhabotinskiĭ chemical reaction, J. Differential Equations 40 (1981), no. 2, 253–278. MR 619137, https://doi.org/10.1016/0022-0396(81)90021-8
  • [20] A. Kolmogoroff, I. Petrovsky, and N. Piscounoff, Etude de léquation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moshu, Ser. Internat., Sec. A, 1, 1-25 (1937)
  • [21] H. Kurland, Dissertation, Univ. of Wisconsin, Madison, 1978
  • [22] J. D. Murray, Lectures on nonlinear-differential equation models in biology, Clarendon Press, 1977
  • [23] J. D. Murray, Animal coat markings: a general pattern formation mechanism, preprint
  • [24] N. F. Britton and J. D. Murray, Threshold, wave and cell-cell avalanche behaviour in a class of substrate inhibition oscillators, J. Theoret. Biol. 77 (1979), no. 3, 317–332. MR 539085, https://doi.org/10.1016/0022-5193(79)90359-X
  • [25] H. J. K. Moet, A note on the asymptotic behavior of solutions of the KPP equation, SIAM J. Math. Anal. 10 (1979), no. 4, 728–732. MR 533943, https://doi.org/10.1137/0510067
  • [26] L. A. Peletier, Asymptotic stability of traveling waves, in Instability of continuous systems, IUTAM Symposium, 1969
  • [27] J. Rinzel, Integration and propagation of neuroelectric signals, in MAA studies in mathematical biology (ed. Simon Levine), 1978
  • [28] D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Advances in Math. 22 (1976), no. 3, 312–355. MR 0435602, https://doi.org/10.1016/0001-8708(76)90098-0
  • [29] D. H. Sattinger, Weighted norms for the stability of traveling waves, J. Differential Equations 25 (1977), no. 1, 130–144. MR 0447813, https://doi.org/10.1016/0022-0396(77)90185-1
  • [30] F. F. Seelig, Chemical oscillations by substrate inhibition: a parametrically universal oscillator type in homogeneous catalysis by metal complex formation, Z. Naturforsch. 31a, 1168-1172 (1976)
  • [31] D. Thomas, Artificial enzyme membranes, transport, memory, and oscillatory phenomena, in Proc. int. symp. on analysis and control of immobilized enzyme systems (ed. D. Thomas and J.-P. Kernevez), 1976
  • [32] William C. Troy, The existence of traveling wave front solutions of a model of the Belousov-Zhabotinskii chemical reaction, J. Differential Equations 36 (1980), no. 1, 89–98. MR 571130, https://doi.org/10.1016/0022-0396(80)90078-9
  • [33] Hans F. Weinberger, Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat. (6) 8 (1975), 295–310 (English, with Italian summary). Collection of articles dedicated to Mauro Picone on the occasion of his ninetieth birthday. MR 0397126

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35B40, 35K55, 80A20, 92A15

Retrieve articles in all journals with MSC: 35B40, 35K55, 80A20, 92A15

Additional Information

DOI: https://doi.org/10.1090/qam/614555
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society