A note on the stability of traveling-wave solutions to a class of reaction-diffusion systems

Author:
Jonathan Bell

Journal:
Quart. Appl. Math. **38** (1981), 489-496

MSC:
Primary 35B40; Secondary 35K55, 80A20, 92A15

DOI:
https://doi.org/10.1090/qam/614555

MathSciNet review:
614555

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Many classes of reaction-diffusion systems have been shown to have traveling-wave solutions. For a class of such systems for which a comparison theorem can be used, we establish a wave stability result which roughly states that these wave solutions are asymptotically stable to perturbations which lie in some weighted -space if their speeds are sufficiently large. We then apply this result to some excitable systems, namely a model of the Belousov-Zhabotinskii reaction, a substrate-inhibition biochemical model, and a class of models recently studied by Fife.

**[1]**J. Bell,*Modelling parallel, unmyelinated axons: pulse trapping and ephaptic transmission*, SIAM J. Appl. Math., to appear MR**622880****[2]**A. Berman and R. Plemmons,*Nonnegative matrices in the mathematical sciences*, Academic Press, 1979 MR**544666****[3]**N. F. Britton, and J. D. Murray,*Threshold, wave and cell-cell avalanche behavior in a class of substrate inhibition oscillators*, J. Theor. Biol.**77**, 317-332 (1979) MR**539085****[4]**K. N. Chueh, C. C. Conley and J. A. Smoller,*Positively invariant regions for systems of nonlinear diffusion equations*, Ind. U. Math. J.**26**, 373-392 (1977) MR**0430536****[5]**C. Conley and J. Smoller,*On the structure of magnetohydrodynamic shock waves*, MRC Report No. 1336, 1973 MR**0368586****[6]**R. J. Field and R. M. Noyes,*Limit cycle oscillations in a model of a real chemical reaction*, J. Chem. Phys.**60**, 1877-1884 (1974)**[7]**P. C. Fife,*Singular perturbation and wave front techniques in reaction-diffusion problems*, In*Asymptotic methods and singular perturbations*, SIAM-AMS Publ.**10**, 23-50 (1976) MR**0521628****[8]**P. C. Fife,*Mathematical aspects of reacting and diffusing systems*, Lecture Notes in Biomathematics,**28**, Springer-Verlag, 1979 MR**527914****[9]**A. Friedman,*Partial differential equations of parabolic type*, Prentice-Hall, 1964 MR**0181836****[10]**I. M. Gelfand,*Some problems in the theory of quasilinear equations*, Amer. Math. Soc. Transl.**29**, 295-381 (1963) MR**0153960****[11]**A. L. Hodgkin and A. F. Huxley,*A quantitative description of membrane current and its application to conduction and excitation in nerve*, J. Physiol.**117**, 500-544 (19 )**[12]**F. Hoppensteadt,*Mathematical theories of populations: demographic genetics and epidemics*, Regional Conf. Ser. in Appl. Math., SIAM, Vol. 20, 1975 MR**0526771****[13]**L. N. Howard and N. Kopell,*Wave trains, shock fronts, and transition layers in reaction-diffusion equations*, pp. 1-12, in*Mathematical aspects of chemical and biochemical problems and quantum chemistry*, Proc. SIAM-AMS Symp. 8, 1974 MR**0433038****[14]**A. Jeffrey, and T. Kakutani*Stability of the Burgers shock wave and the Korteweg-deVries solution*, Ind. Univ. Math. J.**20**, 463-469 (1970) MR**0268502****[15]**D. A. Larson,*On the existence and stability of bifurcated solitary wave solutions to nonlinear diffusion equations*, J. Math. Anal. Appl. preprint, to appear.**[16]**Y. I. Kanel',*The behavior of solutions of the Cauchy problem with the time tends to infinity, in the case of quasilinear equations arising in the theory of combustion*, DAN SSSR,**132**, 268-271 (1960)**[17]**Y. I. Kanel',*Some problems involving burning-theory equations*, DAN SSSR**136**, 277-280 (1961)**[18]**J.-P. Kernevez, G. Joly, M. C. Dubau, B. Bunow and D. Thomas,*Hysteresis oscillations, and pattern formation in realistic immobilized enzyme systems*, J. Math. Biol.**7**, 41-56 (1979) MR**648839****[19]**G. A. Klaasen, and W. C. Troy,*The asymptotic behavior of solutions of a system of reaction-diffusion equations which models the Belovsov-Zhabotinskii chemical reaction*, Preprint, 1979 MR**619137****[20]**A. Kolmogoroff, I. Petrovsky, and N. Piscounoff,*Etude de léquation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique*, Bull. Univ. Moshu, Ser. Internat., Sec. A,**1**, 1-25 (1937)**[21]**H. Kurland, Dissertation, Univ. of Wisconsin, Madison, 1978**[22]**J. D. Murray,*Lectures on nonlinear-differential equation models in biology*, Clarendon Press, 1977**[23]**J. D. Murray,*Animal coat markings: a general pattern formation mechanism*, preprint**[24]**J. D. Murray, N. F. Britton and G. Joly,*A model for hydranth regeneration in Tubularia*, preprint, 1979 MR**539085****[25]**H. J. K. Moet,*A note on the asymptotic behavior of solutions of the KPP equation*, SIAM J. Math. Anal.**10**, 728-732 (1979) MR**533943****[26]**L. A. Peletier,*Asymptotic stability of traveling waves*, in*Instability of continuous systems*, IUTAM Symposium, 1969**[27]**J. Rinzel,*Integration and propagation of neuroelectric signals*, in*MAA studies in mathematical biology*(ed. Simon Levine), 1978**[28]**D. H. Sattinger,*On the stability of waves of nonlinear parabolic systems*, Adv. in Math.**22**, 312-355 (1976) MR**0435602****[29]**D. H. Sattinger,*Weighted norms for the stability of traveling waves*. J. Diff. Eqs.**25**, 130-144 (1977) MR**0447813****[30]**F. F. Seelig,*Chemical oscillations by substrate inhibition: a parametrically universal oscillator type in homogeneous catalysis by metal complex formation*, Z. Naturforsch.**31a**, 1168-1172 (1976)**[31]**D. Thomas,*Artificial enzyme membranes, transport, memory, and oscillatory phenomena*, in*Proc. int. symp. on analysis and control of immobilized enzyme systems*(ed. D. Thomas and J.-P. Kernevez), 1976**[32]**W. C. Troy,*The existence of traveling wave front solutions of a model of the Belousov-Zhabotinskii chemical reaction*, J. Diff. Eqs. (to appear) MR**571130****[33]**H. F. Weinberger,*Invariant sets for weakly coupled parabolic and elliptic systems*, Rend. Mat.**8**, 295-310 (1975) MR**0397126**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35B40,
35K55,
80A20,
92A15

Retrieve articles in all journals with MSC: 35B40, 35K55, 80A20, 92A15

Additional Information

DOI:
https://doi.org/10.1090/qam/614555

Article copyright:
© Copyright 1981
American Mathematical Society