A note on the stability of traveling-wave solutions to a class of reaction-diffusion systems

Author:
Jonathan Bell

Journal:
Quart. Appl. Math. **38** (1981), 489-496

MSC:
Primary 35B40; Secondary 35K55, 80A20, 92A15

DOI:
https://doi.org/10.1090/qam/614555

MathSciNet review:
614555

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Many classes of reaction-diffusion systems have been shown to have traveling-wave solutions. For a class of such systems for which a comparison theorem can be used, we establish a wave stability result which roughly states that these wave solutions are asymptotically stable to perturbations which lie in some weighted -space if their speeds are sufficiently large. We then apply this result to some excitable systems, namely a model of the Belousov-Zhabotinskii reaction, a substrate-inhibition biochemical model, and a class of models recently studied by Fife.

**[1]**Jonathan Bell,*Modeling parallel, unmyelinated axons: pulse trapping and ephaptic transmission*, SIAM J. Appl. Math.**41**(1981), no. 1, 168–180. MR**622880**, https://doi.org/10.1137/0141012**[2]**Abraham Berman and Robert J. Plemmons,*Nonnegative matrices in the mathematical sciences*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Computer Science and Applied Mathematics. MR**544666****[3]**N. F. Britton and J. D. Murray,*Threshold, wave and cell-cell avalanche behaviour in a class of substrate inhibition oscillators*, J. Theoret. Biol.**77**(1979), no. 3, 317–332. MR**539085**, https://doi.org/10.1016/0022-5193(79)90359-X**[4]**K. N. Chueh, C. C. Conley, and J. A. Smoller,*Positively invariant regions for systems of nonlinear diffusion equations*, Indiana Univ. Math. J.**26**(1977), no. 2, 373–392. MR**0430536**, https://doi.org/10.1512/iumj.1977.26.26029**[5]**Charles C. Conley and Joel A. Smoller,*On the structure of magnetohydrodynamic shock waves*, Comm. Pure Appl. Math.**27**(1974), 367–375. MR**0368586**, https://doi.org/10.1002/cpa.3160270306**[6]**R. J. Field and R. M. Noyes,*Limit cycle oscillations in a model of a real chemical reaction*, J. Chem. Phys.**60**, 1877-1884 (1974)**[7]**Paul C. Fife,*Singular perturbation and wave front techniques in reaction-diffusion problems*, Asymptotic methods and singular perturbations (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1976) Amer. Math. Soc., Providence, R.I., 1976, pp. 23–50. SIAM-AMS Proceedings, Vol. X. MR**0521628****[8]**Paul C. Fife,*Mathematical aspects of reacting and diffusing systems*, Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin-New York, 1979. MR**527914****[9]**Avner Friedman,*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836****[10]**I. M. Gel′fand,*Some problems in the theory of quasilinear equations*, Amer. Math. Soc. Transl. (2)**29**(1963), 295–381. MR**0153960****[11]**A. L. Hodgkin and A. F. Huxley,*A quantitative description of membrane current and its application to conduction and excitation in nerve*, J. Physiol.**117**, 500-544 (19 )**[12]**Frank Hoppensteadt,*Mathematical theories of populations: demographics, genetics and epidemics*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. Regional Conference Series in Applied Mathematics. MR**0526771****[13]**L. N. Howard and N. Kopell,*Wave trains, shock fronts, and transition layers in reaction-diffusion equations*, Mathematical aspects of chemical and biochemical problems and quantum chemistry (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1974) Amer. Math. Soc., Providence, R. I., 1974, pp. 1–12. SIAM-AMS Proceedings, Vol. VIII. MR**0433038****[14]**Alan Jeffrey and Tsunehiko Kakutani,*Stability of the Burgers shock wave and the Korteweg-de Vries soliton.*, Indiana Univ. Math. J.**20**(1970/1971), 463–468. MR**0268502**, https://doi.org/10.1512/iumj.1970.20.20039**[15]**D. A. Larson,*On the existence and stability of bifurcated solitary wave solutions to nonlinear diffusion equations*, J. Math. Anal. Appl. preprint, to appear.**[16]**Y. I. Kanel',*The behavior of solutions of the Cauchy problem with the time tends to infinity, in the case of quasilinear equations arising in the theory of combustion*, DAN SSSR,**132**, 268-271 (1960)**[17]**Y. I. Kanel',*Some problems involving burning-theory equations*, DAN SSSR**136**, 277-280 (1961)**[18]**J.-P. Kernevez, G. Joly, M.-C. Duban, B. Bunow, and D. Thomas,*Hysteresis, oscillations, and pattern formation in realistic immobilized enzyme systems*, J. Math. Biol.**7**(1979), no. 1, 41–56. MR**648839**, https://doi.org/10.1007/BF00276413**[19]**Gene A. Klaasen and William C. Troy,*The asymptotic behavior of solutions of a system of reaction-diffusion equations which models the Belousov-Zhabotinskiĭ chemical reaction*, J. Differential Equations**40**(1981), no. 2, 253–278. MR**619137**, https://doi.org/10.1016/0022-0396(81)90021-8**[20]**A. Kolmogoroff, I. Petrovsky, and N. Piscounoff,*Etude de léquation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique*, Bull. Univ. Moshu, Ser. Internat., Sec. A,**1**, 1-25 (1937)**[21]**H. Kurland, Dissertation, Univ. of Wisconsin, Madison, 1978**[22]**J. D. Murray,*Lectures on nonlinear-differential equation models in biology*, Clarendon Press, 1977**[23]**J. D. Murray,*Animal coat markings: a general pattern formation mechanism*, preprint**[24]**N. F. Britton and J. D. Murray,*Threshold, wave and cell-cell avalanche behaviour in a class of substrate inhibition oscillators*, J. Theoret. Biol.**77**(1979), no. 3, 317–332. MR**539085**, https://doi.org/10.1016/0022-5193(79)90359-X**[25]**H. J. K. Moet,*A note on the asymptotic behavior of solutions of the KPP equation*, SIAM J. Math. Anal.**10**(1979), no. 4, 728–732. MR**533943**, https://doi.org/10.1137/0510067**[26]**L. A. Peletier,*Asymptotic stability of traveling waves*, in*Instability of continuous systems*, IUTAM Symposium, 1969**[27]**J. Rinzel,*Integration and propagation of neuroelectric signals*, in*MAA studies in mathematical biology*(ed. Simon Levine), 1978**[28]**D. H. Sattinger,*On the stability of waves of nonlinear parabolic systems*, Advances in Math.**22**(1976), no. 3, 312–355. MR**0435602**, https://doi.org/10.1016/0001-8708(76)90098-0**[29]**D. H. Sattinger,*Weighted norms for the stability of traveling waves*, J. Differential Equations**25**(1977), no. 1, 130–144. MR**0447813**, https://doi.org/10.1016/0022-0396(77)90185-1**[30]**F. F. Seelig,*Chemical oscillations by substrate inhibition: a parametrically universal oscillator type in homogeneous catalysis by metal complex formation*, Z. Naturforsch.**31a**, 1168-1172 (1976)**[31]**D. Thomas,*Artificial enzyme membranes, transport, memory, and oscillatory phenomena*, in*Proc. int. symp. on analysis and control of immobilized enzyme systems*(ed. D. Thomas and J.-P. Kernevez), 1976**[32]**William C. Troy,*The existence of traveling wave front solutions of a model of the Belousov-Zhabotinskii chemical reaction*, J. Differential Equations**36**(1980), no. 1, 89–98. MR**571130**, https://doi.org/10.1016/0022-0396(80)90078-9**[33]**Hans F. Weinberger,*Invariant sets for weakly coupled parabolic and elliptic systems*, Rend. Mat. (6)**8**(1975), 295–310 (English, with Italian summary). Collection of articles dedicated to Mauro Picone on the occasion of his ninetieth birthday. MR**0397126**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35B40,
35K55,
80A20,
92A15

Retrieve articles in all journals with MSC: 35B40, 35K55, 80A20, 92A15

Additional Information

DOI:
https://doi.org/10.1090/qam/614555

Article copyright:
© Copyright 1981
American Mathematical Society