Penalty/finite-element approximations of a class of unilateral problems in linear elasticity

Authors:
Noboru Kikuchi and Young Joon Song

Journal:
Quart. Appl. Math. **39** (1981), 1-22

MSC:
Primary 73T05; Secondary 49D30, 65N30, 73K25

DOI:
https://doi.org/10.1090/qam/613950

MathSciNet review:
613950

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper is concerned with a development of a penalty/finite-element approximation of a class of unilateral problems in linear elasticity. A penalty method is applied to resolve the inequality constraint due to contact, and convergence with respect to the penalty parameter is discussed. Then finite-element approximations are introduced to the penalized formulation with a priori error estimates in terms of the penalty and mesh parameters. Several numerical examples are also given in the end of the paper.

**[1]**G. Fichera,*Un teorema generale di semicontinuita per gli integrali multipli e sue applicazioni alla fisicamatematica, in Atti del convegno Lagrangiano*, Torino, 1963, pp. 138-151**[2]**G. Duvaut and J. L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin, 1976 MR**0521262****[3]**J. J. Kalker,*Variational principles of contact elastostatics*, J. Inst. Maths. Applics.**20**, 199-219 (1977) MR**0455732****[4]**I. Hlavacek and J. Lovisek,*A finite-element analysis for the Signorini problem in plane elastostatics*, Aplikace Matematiky,**22**, 215-228 (1977) MR**0446014****[5]**N. Kikuchi and J. T. Oden,*Contact problems in elasticity*, SIAM, Philadelphia, 1981**[6]**R. Glowinski, J. L. Lions and R. Tremolieres,*Analyse numérique des Inéquations variationnelles*, 2 vols., Dunod, Paris, 1976**[7]**I. Paczelt,*Solution of elastic contact problems by the finite-element displacement method*. Acta Techica Acad. Sci. Hungaricae,**82**, 354-375 (1976) MR**0452064****[8]**N. Kikuchi and Y. J. Song,*Contact problems involving forces and movements for incompressible linearly elastic materials*, Int. J. Engng Sci.**18**, 357-377 (1980) MR**661276****[9]**S. K. Chan and I. S. Tuba,*A finite-element method for contact problems*, Int. J. Mech. Sci.**13**, 615-639 (1971)**[10]**T. J. R. Hughes, R. L. Taylor, L. Sackman, A. Curnier and W. Kanoknukulchai,*A finite-element method for a class of contact-impact problems*, Compt. Meth. Appl. Mech. Engng.**8**, 249-276 (1976)**[11]**R. Courant, K. Friedrichs and H. Lewy,*On the partial difference equations of mathematical physics*, IBM Journal**11**, 215-234 (1967) MR**0213764****[12]**R. Courant,*Variational methods for the solutions of problems of equilibrium and vibrations*. Bull. Amer. Math. Soc.**49**, 1-23 (1943) MR**0007838****[13]**W. I. Zangwill,*Nonlinear programming via penalty functions*, Management Science**13**, 344-358 (1967) MR**0252040****[14]**J. L. Lions,*Quelques methodes de resolution des problèmes aux limites Nonlinéaires*, Dunod, Paris, 1969**[15]**J. P. Aubin,*Approximation of elliptic boundary value problems*, Wiley-Interscience, New York, 1972 MR**0478662****[16]**T. Tsuta and S. Yamaji,*Finite-element analysis of contact problem, in Theory and practice in finite-element structural analysis*, Tokyo University Press, 177-194, 1973**[17]**Y. Yamada, Y. Ezawa, I. Nishiguchi and M. Okabe,*Handy incorporation of bond and singular elements in finite element solution routine, Trans. Fifth Int. Conf. on SMIRT*, 1979**[18]**M. Okabe and N. Nikuchi,*An application of penalty methods to a two-body contact problem, Proc. Third EMD Speciality Conf*., ASCE, 1979**[19]**J. Necas,*Les méthodes directes et théorie des équations elliptiques*, Masson, 1967**[20]**L. A. Garlin,*Theory of elastic contact problems*, Moscow, 1953. Japanese translation by T. Sato, Tokyo, 1956**[21]**J. T. Oden, N. Nikuchi, and Y. J. Song,*An analysis of exterior penalty methods and reduced integration for finite element approximations of contact problems in incompressible elasticity*, TICOM Report, The University of Texas at Austin, 1980**[22]**I. Babuska and A. K. Aziz,*The mathematical foundations of the finite-element methods with applications to partial differential equations*, Academic Press, New York, 1972 MR**0347104****[23]**R. S. Falk,*Error estimates for the approximation of a class of variational inequalities*, Math. Computation**28**, 963-971 (1974) MR**0391502****[24]**P. G. Ciarlet,*The finite-element method for elliptic problems*, North-Holland, Amsterdam, 1978 MR**0520174****[25]**W. Goldsmith,*Impact*, Edward Arnold, London, 1960 MR**0128163**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73T05,
49D30,
65N30,
73K25

Retrieve articles in all journals with MSC: 73T05, 49D30, 65N30, 73K25

Additional Information

DOI:
https://doi.org/10.1090/qam/613950

Article copyright:
© Copyright 1981
American Mathematical Society