Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Stable small-amplitude solutions in reaction-diffusion systems

Author: G. Bard Ermentrout
Journal: Quart. Appl. Math. 39 (1981), 61-86
MSC: Primary 35K55; Secondary 35B32, 80A30
DOI: https://doi.org/10.1090/qam/613952
MathSciNet review: 613952
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Bifurcation and perturbation techniques are used to construct small-amplitude periodic wave-trains for general systems of reaction and diffusion. All solutions are characterized by the amplitude $ a$ and the wavenumber $ k$. For scalar diffusion, $ k \sim a$, while for certain types of nonscalar diffusion, $ k$ is bounded away from zero as $ a \searrow 0$. For certain ranges of $ a$ and $ k$, linear stability of waves is demonstrated.

References [Enhancements On Off] (What's this?)

  • [1] D. S. Cohen, F. C. Hoppensteadt, and R. M. Miura, Slowly modulated oscillations in nonlinear diffusion processes, SIAM J. Appl. Math. 33, 217-229 (1977) MR 0447810
  • [2] D. S. Cohen, P. S. Hagan, and H. C. Simpson, Traveling waves in single and multi-species predator-prey communities, SIAM J. Appl. Math., to appear
  • [3] P. C. Fife, Asymptotic states for equations of reaction and diffusion, Bull. AMS 84, 693-726 (1978) MR 0481405
  • [4] L. N. Howard and N. Kopell, Slowly varying waves and shock structures in reaction-diffusion equations, Stud. Appl. Math. 56, 95-145 (1977) MR 0604035
  • [5] N. Kopell and L. N. Howard, Plane wave solutions to reaction-diffusion equations, Stud. Appl. Math. 52, 291-328 (1973) MR 0359550
  • [6] A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38, 279-303 (1969) MR 3363403
  • [7] P. Ortoleva and J. Ross, On a variety of wave phenomena in chemical oscillations, J. Chem. Phys. 60, 5090-5107 (1974)
  • [8] J. Rinzel, Neutrally stable traveling waves of nerve conduction equations, J. Math. Biol. 2, 205-217 (1975) MR 0406569
  • [9] D. H. Sattinger, Topics in stability theory and bifurcation theory, Lectures Notes in Mathematics No. 309, Springer-Verlag, Heidelberg, New York, 1973 MR 0463624

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35K55, 35B32, 80A30

Retrieve articles in all journals with MSC: 35K55, 35B32, 80A30

Additional Information

DOI: https://doi.org/10.1090/qam/613952
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society