Energy splitting

Authors:
David G. Costa and Walter A. Strauss

Journal:
Quart. Appl. Math. **39** (1981), 351-361

MSC:
Primary 35L45; Secondary 78A25, 81C05, 81E10

DOI:
https://doi.org/10.1090/qam/636240

MathSciNet review:
636240

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**G. S. S. Avila and D. G. Costa,*Asymptotic properties of general symmetric hyperbolic systems*, J. Funct. Anal. (to appear) MR**560217****[2]**C. Bardos and D. G. Costa,*Decay along nonbicharacteristic rays of solutions of the first-order hyperbolic systems*, J. Math. Pures Appl.**53**, 427-435 (1974) MR**0374687****[3]**A. R. Brodsky,*On the asymptotic behavior of solutions of the wave equation*, Proc. A.M.S.**18**, 207-8 (1967) MR**0212417****[4]**D. G. Costa,*On partition of energy for uniformly propagative systems*, J. Math. Anal. App.**58**, 56-62 (1977) MR**0470505****[5]**D. G. Costa and W. A. Strauss,*Energy asymptotics of hyperbolic systems*, A.M.S. Notices**26**, A-434 (1979)**[6]**G. Dassios,*Equipartition of energy for Maxwell's equations*, Quart. Appl. Math. (to appear)**[7]**G. Dassios.*Equipartition of energy in elastic wave propagation*, Mech. Res. Comm.**6**, 45-50 (1979) MR**524233****[8]**G. Dassios and E. Galanis,*Asymptotic equipartition of kinetic and strain energy for elastic waves in anisotropic media*, Quart. Appl. Math.**38**, 121-128 (1980) MR**575835****[9]**F. G. Friedlander,*On the radiation field of pulse solutions of the wave equation II*, Proc. Roy. Soc. London**279A**, 386-394 (1964) MR**0164132****[10]**R. Glassey and W. A. Strauss,*Decay of classical Yang-Mills fields*, Comm. Math. Phys.**65**, 1-13 (1979). Also,*Propagation of the energy of Yang-Mills fields*, in:*Bifurcation phenomena in mathematical physics*(ed. D. Bessis and C. Bardos), Reidel Publ. Co. (to appear) MR**526974****[11]**C. Huygens,*Traité de la Lumière*, Paris, 1690**[12]**F. John,*Plane waves and spherical means applied to partial differential equations*, Interscience, 1955 MR**0075429****[13]**P. D. Lax and R. S. Phillips,*Scattering theory*, Academic Press, 1967 MR**0217440****[14]**P. D. Lax and R. S. Phillips,*Decaying modes for the wave equation*, Comm. Pure App. Math.**22**, 737-787 (1969) MR**0254432****[15]**P. D. Lax and R. S. Phillips,*Scattering theory for the acoustic equation in an even number of space dimensions*, Indiana U. Math. J.**22**, 101-134 (1972) MR**0304882****[16]**W. A. Strauss,*Decay and asymptotics for*, J. Funct. Anal.**2**, 409-457 (1968) MR**0233062****[17]**W. A. Strauss,*Existence of the scattering operator for moving obstacles*, J. Funct. Anal.**31**, 255-262 (1979) MR**525956****[18]**W. A. Strauss,*Some energy components tend to zero globally*, A.M.S. Notices**26**, A-431 (1979)**[19]**R. S. Strichartz,*Asymptotic behavior of waves*(to appear) MR**611588****[20]**C. H. Wilcox,*Scattering theory for the d'Alembert equation in exterior domains*, Lecture Notes in Math. No. 442, Springer, 1975 MR**0460927****[21]**C. H. Wilcox,*Asymptotic wave functions and energy distributions in strongly propagative anisotropic media*, J. Math. Pures Appl.**57**, 275-321 (1978) MR**513101**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L45,
78A25,
81C05,
81E10

Retrieve articles in all journals with MSC: 35L45, 78A25, 81C05, 81E10

Additional Information

DOI:
https://doi.org/10.1090/qam/636240

Article copyright:
© Copyright 1981
American Mathematical Society